A200745 Number of partitions of n into distinct non-divisors of n.
1, 0, 0, 0, 0, 1, 0, 2, 1, 2, 2, 6, 1, 9, 5, 6, 5, 20, 4, 28, 7, 19, 24, 55, 6, 51, 45, 49, 27, 136, 16, 180, 50, 117, 143, 146, 28, 403, 242, 260, 68, 668, 91, 852, 246, 260, 649, 1370, 90, 1191, 493, 1110, 634, 2701, 386, 1635, 462, 2160, 2486, 5154, 167
Offset: 0
Keywords
Examples
a(10) = #{7+3, 6+4} = 2; a(11) = #{9+2, 8+3, 7+4, 6+5, 6+3+2, 5+4+2} = 6; a(12) = #{7+5} = 1; a(13) = #{11+2, 10+3, 9+4, 8+5, 8+3+2, 7+6, 7+4+2, 6+5+2, 6+4+3} = 9; a(14) = #{11+3, 10+4, 9+5, 8+6, 6+5+3} = 5; a(15) = #{13+2, 11+5, 9+6, 9+4+2, 8+7, 8+5+2} = 6.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..2000 (terms 0..150 from Reinhard Zumkeller)
Programs
-
Haskell
a200745 n = p [nd | nd <- [1..n], mod n nd /= 0] n where p _ 0 = 1 p [] _ = 0 p (k:ks) m | m < k = 0 | otherwise = p ks (m - k) + p ks m
-
Maple
a:= proc(n) option remember; local b, l; l:= sort([({$1..n} minus numtheory[divisors](n))[]]); b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1) +`if`(l[i]>n, 0, b(n-l[i], i-1)))) end: forget(b): b(n, nops(l)) end: seq(a(n), n=0..80); # Alois P. Heinz, Jan 18 2013
-
Mathematica
a[0] = 1; a[n_] := a[n] = Module[{b, l}, l = Sort[Range[n] ~Complement~ Divisors[n]]; b[m_, i_] := b[m, i] = If[m == 0, 1, If[i < 1, 0, b[m, i - 1] + If[l[[i]] > m, 0, b[m - l[[i]], i - 1]]]]; b[n, Length[l]]]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Feb 06 2017, after Alois P. Heinz *)