cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A200750 Number of partitions of n such that the number of parts and the greatest part are coprime.

Original entry on oeis.org

1, 2, 2, 4, 4, 8, 8, 14, 18, 28, 32, 48, 58, 82, 104, 144, 178, 240, 294, 386, 478, 616, 750, 958, 1172, 1476, 1808, 2262, 2752, 3418, 4144, 5096, 6168, 7532, 9056, 10998, 13174, 15888, 18968, 22772, 27074, 32364, 38366, 45662, 54006, 64062, 75534, 89324
Offset: 1

Views

Author

Alois P. Heinz, Nov 21 2011

Keywords

Examples

			a(5) = 4: [1,1,1,1,1], [1,2,2], [2,3], [5].
a(6) = 8: [1,1,1,1,1,1], [1,1,1,1,2], [2,2,2], [1,1,1,3], [3,3], [1,1,4], [1,5], [6].
		

Crossrefs

Cf. A199886.

Programs

  • Maple
    b:= proc(n, j, t) option remember;
          add(b(n-i, i, t+1), i=j..iquo(n, 2))+`if`(igcd(t, n)=1, 1, 0)
        end:
    a:= n-> b(n, 1, 1):
    seq(a(n), n=1..60);
  • Mathematica
    b[n_, j_, t_] := b[n, j, t] = Sum[b[n-i, i, t+1], {i, j, Quotient[n, 2]}] + If[GCD[t, n] == 1, 1, 0];
    a[n_] := b[n, 1, 1];
    Array[a, 60] (* Jean-François Alcover, Dec 05 2020, after Alois P. Heinz *)