A200756 Triangle T(n,k) = coefficient of x^n in expansion of ((1 -sqrt(1 - 4*x - 4*x^2))/2)^k.
1, 2, 1, 4, 4, 1, 12, 12, 6, 1, 40, 40, 24, 8, 1, 144, 144, 92, 40, 10, 1, 544, 544, 360, 176, 60, 12, 1, 2128, 2128, 1440, 752, 300, 84, 14, 1, 8544, 8544, 5872, 3200, 1400, 472, 112, 16, 1, 35008, 35008, 24336, 13664, 6352, 2400, 700, 144, 18, 1
Offset: 1
Examples
1, 2, 1, 4, 4, 1, 12, 12, 6, 1, 40, 40, 24, 8, 1, 144, 144, 92, 40, 10, 1, 544, 544, 360, 176, 60, 12, 1
Programs
-
Mathematica
Table[k Sum[Binomial[i, n - i] Binomial[-k + 2 i - 1, i - 1]/i, {i, k, n}], {n, 10}, {k, n}] // Flatten (* Michael De Vlieger, Dec 11 2015 *)
-
Maxima
T(n,k):=k*(sum((binomial(i,n-i)*binomial(-k+2*i-1,i-1))/i,i,k,n));
-
PARI
tabl(nn) = {for (n=1, nn, for(k=1, n, print1(k*sum(i=k, n, binomial(i,n-i)*binomial(-k+2*i-1,i-1)/i),", ",);); print();); }; tabl(10); \\ Indranil Ghosh, Mar 04 2017
Formula
T(n,k) = k*( Sum_{i = k..n} binomial(i,n-i)*binomial(-k+2*i-1,i-1)/i );
Comments