cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A200756 Triangle T(n,k) = coefficient of x^n in expansion of ((1 -sqrt(1 - 4*x - 4*x^2))/2)^k.

Original entry on oeis.org

1, 2, 1, 4, 4, 1, 12, 12, 6, 1, 40, 40, 24, 8, 1, 144, 144, 92, 40, 10, 1, 544, 544, 360, 176, 60, 12, 1, 2128, 2128, 1440, 752, 300, 84, 14, 1, 8544, 8544, 5872, 3200, 1400, 472, 112, 16, 1, 35008, 35008, 24336, 13664, 6352, 2400, 700, 144, 18, 1
Offset: 1

Views

Author

Vladimir Kruchinin, Nov 22 2011

Keywords

Comments

Triangle T(n,k) =
1. Riordan Array (1, (1 - sqrt(1 - 4*x - 4*x^2))/2) without first column.
2. Riordan Array ((1 - sqrt(1 - 4*x - 4*x^2))/(2*x), (1 - sqrt(1 - 4*x - 4*x^2))/2) numbering triangle (0,0).
The array factorizes in the Bell subgroup of the Riordan group as (1 + x, x*(1 + x)) * (c(x), x*c(x)) = A030528 * A033184, where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. of the Catalan numbers A000108. - Peter Bala, Dec 11 2015

Examples

			    1,
    2,   1,
    4,   4,   1,
   12,  12,   6,   1,
   40,  40,  24,   8,  1,
  144, 144,  92,  40, 10,  1,
  544, 544, 360, 176, 60, 12, 1
		

Crossrefs

Cf. A025227 (column 1), A000108, A030528, A033184.

Programs

  • Mathematica
    Table[k Sum[Binomial[i, n - i] Binomial[-k + 2 i - 1, i - 1]/i, {i, k, n}], {n, 10}, {k, n}] // Flatten (* Michael De Vlieger, Dec 11 2015 *)
  • Maxima
    T(n,k):=k*(sum((binomial(i,n-i)*binomial(-k+2*i-1,i-1))/i,i,k,n));
    
  • PARI
    tabl(nn) = {for (n=1, nn, for(k=1, n, print1(k*sum(i=k, n, binomial(i,n-i)*binomial(-k+2*i-1,i-1)/i),", ",);); print();); };
    tabl(10); \\ Indranil Ghosh, Mar 04 2017

Formula

T(n,k) = k*( Sum_{i = k..n} binomial(i,n-i)*binomial(-k+2*i-1,i-1)/i );