cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A200782 Expansion of 1 / (1 - 6*x + 20*x^3 - 15*x^4 + x^6).

Original entry on oeis.org

1, 6, 36, 196, 1071, 5796, 31395, 169884, 919413, 4975322, 26924106, 145698840, 788446400, 4266656226, 23088902733, 124944995676, 676136621430, 3658895818470, 19800020091895, 107147296401684, 579824822459421, 3137707025200000
Offset: 0

Views

Author

R. H. Hardin, Nov 22 2011

Keywords

Comments

a(n) is the number of words of length n over an alphabet of size 6 which do not contain any strictly decreasing factor (consecutive subword) of length 3.
Equivalently, dimensions of homogeneous components of the universal associative envelope for a certain nonassociative triple system [Bremner].
This is the g.f. corresponding to row 6 of A225682.

Examples

			a(n) is also the number of words of length n over an alphabet of size 6 which do not contain any strictly increasing factor of length 3. Some solutions for n=5:
..5....5....0....3....2....4....3....3....3....3....0....3....3....1....0....1
..1....5....0....0....4....5....1....1....3....5....1....0....2....0....3....4
..3....5....1....0....4....3....1....4....5....0....1....5....1....0....0....3
..0....0....0....4....1....1....1....4....2....4....1....1....2....5....4....1
..1....4....2....0....0....0....1....3....1....4....3....2....2....2....4....5
		

Crossrefs

Column 5 of A200785.
G.f. corresponds to row 6 of A225682.

Programs

  • Mathematica
    CoefficientList[Series[1 / (1 - 6*x + 20*x^3 - 15*x^4 + x^6), {x, 0, 20}], x] (* Vaclav Kotesovec, Jan 26 2015 *)
    LinearRecurrence[{6,0,-20,15,0,-1},{1,6,36,196,1071,5796},30] (* Harvey P. Dale, Jul 28 2019 *)
  • PARI
    Vec(1/(1-6*x+20*x^3-15*x^4+x^6) + O(x^30)) \\ Michel Marcus, Jan 26 2015

Formula

G.f.: 1 / (1 - 6*x + 20*x^3 - 15*x^4 + x^6).
a(n) = 6*a(n-1) - 20*a(n-3) + 15*a(n-4) - a(n-6).

Extensions

Entry revised by N. J. A. Sloane, May 17 2013, merging this with A225381
Typo in name corrected by Michel Marcus, Jan 26 2015