cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A200937 Values y for infinite sequence x^3 - y^2 = d with increasing coefficient r = sqrt(x)/|d| or family of solutions Mordell curve with extension sqrt(2).

Original entry on oeis.org

100, 2620, 154396, 240004, 37172564, 40080716, 7596048140, 7694839700, 1512067083076, 1515423087964, 299656796131324, 299770801505956, 59339881525800500, 59343754352533100, 11749314454296080876, 11749446016399614644, 2326315710145219660324, 2326320179383913075836, 460599127771776655165660, 460599279594330127759300
Offset: 0

Views

Author

Artur Jasinski, Nov 25 2011

Keywords

Comments

For x values see A200936.
For d values see A200938.
This sequence is equivalent of A200217, but A200217 was for quadratic field with extension sqrt(5).
All numbers in this sequence are of the form 4*(2*n+1).

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((100 +2620*x +130596*x^2 -383556*x^3 +1239016*x^4 +4252504*x^5 -332600*x^6 -932360*x^7 +10356*x^8 +27564*x^9 -44*x^10 -116*x^11)/( (x^2+6*x+1)*(x^2-6*x+1)*(x^2+2*x-1)*(x^2-2*x-1)*(x^2+14*x-1)*(x^2 -14*x -1)))); // G. C. Greubel, Aug 22 2018
  • Mathematica
    aa = {100, 2620, 154396, 240004, 37172564, 40080716, 7596048140, 7694839700, 1512067083076, 1515423087964, 299656796131324, 299770801505956}; a1 = aa[[1]]; a2 = aa[[2]]; a3 = aa[[3]]; a4 = aa[[4]]; a5 = aa[[5]]; a6 = aa[[6]]; a7 = aa[[7]]; a8 = aa[[8]]; a9 = aa[[9]]; a10 = aa[[10]]; a11 = aa[[11]]; a12 = aa[[12]]; Do[an = 238*a11 - 8127*a9 + 40868*a7 - 8127*a5 + 238*a3 - a1; a1 = a2; a2 = a3; a3 = a4; a4 = a5; a5 = a6; a6 = a7; a7 = a8; a8 = a9; a9 = a10; a10 = a11; a11 = a12; a12 = an; AppendTo[aa, an], {nn, 1, 88}]; aa
    LinearRecurrence[{0, 238, 0, -8127, 0, 40868, 0, -8127, 0, 238, 0, -1}, {100, 2620, 154396, 240004, 37172564, 40080716, 7596048140, 7694839700, 1512067083076, 1515423087964, 299656796131324, 299770801505956}, 50] (* G. C. Greubel, Aug 22 2018 *)
  • PARI
    x='x+O('x^30); Vec((100 +2620*x +130596*x^2 -383556*x^3 +1239016*x^4 +4252504*x^5 -332600*x^6 -932360*x^7 +10356*x^8 +27564*x^9 -44*x^10 -116*x^11)/( (x^2+6*x+1)*(x^2-6*x+1)*(x^2+2*x-1)*(x^2-2*x-1)*(x^2+14*x-1)*(x^2 -14*x -1))) \\ G. C. Greubel, Aug 18 2018
    

Formula

a(n) = sqrt(A200936(n)^3 - A200938(n)).
a(n) = 238*a(n-2) - 8127*a(n-4) + 40868*a(n-6) - 8127*a(n-8) + 238*a(n-10) - a(n-12).
G.f.: (100 + 2620*x + 130596*x^2 - 383556*x^3 + 1239016*x^4 + 4252504*x^5 - 332600*x^6 - 932360*x^7 + 10356*x^8 + 27564*x^9 - 44*x^10 - 116*x^11)/( (x^2+6*x+1)*(x^2-6*x+1)*(x^2+2*x-1)*(x^2-2*x-1)*(x^2+14*x-1)*(x^2 - 14*x - 1)). - R. J. Mathar, Nov 25 2011

Extensions

Data corrected by G. C. Greubel, Aug 22 2018