A200965 Triangle T(n,k) = coefficient of x^n in expansion of ((1-sqrt(1-4*x))/((1-x)*2))^k = sum(n>=k, T(n,k) * x^n).
1, 2, 1, 4, 4, 1, 9, 12, 6, 1, 23, 34, 24, 8, 1, 65, 98, 83, 40, 10, 1, 197, 294, 273, 164, 60, 12, 1, 626, 919, 891, 612, 285, 84, 14, 1, 2056, 2974, 2938, 2188, 1195, 454, 112, 16, 1, 6918, 9891, 9846, 7698, 4677, 2118, 679, 144, 18, 1, 23714, 33604, 33549
Offset: 1
Examples
Triangle: 1, 2, 1, 4, 4, 1, 9, 12, 6, 1, 23, 34, 24, 8, 1, 65, 98, 83, 40, 10, 1, 197, 294, 273, 164, 60, 12, 1
Programs
-
Mathematica
T[n_, k_]:= (k/n) (Binomial[-1 - k + 2 n, -1 + n] HypergeometricPFQ[{k, k - n, -n}, {1/2 + k/2 - n, 1 + k/2 - n}, 1/4]); Table[T[n, k], {n, 1, 9}, {k, 1, n}] // TableForm (* Peter Luschny, May 30 2022 *)
-
Maxima
T(n,k):=k*sum((binomial(i+k-1,k-1)*binomial(2*(n-i)-k-1,n-i-1))/(n-i),i,0,n-k);
Formula
T(n,k):=k*sum(i=0..n-k, (binomial(i+k-1,k-1)*binomial(2*(n-i)-k-1,n-i-1))/(n-i)).
Comments