cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A200965 Triangle T(n,k) = coefficient of x^n in expansion of ((1-sqrt(1-4*x))/((1-x)*2))^k = sum(n>=k, T(n,k) * x^n).

Original entry on oeis.org

1, 2, 1, 4, 4, 1, 9, 12, 6, 1, 23, 34, 24, 8, 1, 65, 98, 83, 40, 10, 1, 197, 294, 273, 164, 60, 12, 1, 626, 919, 891, 612, 285, 84, 14, 1, 2056, 2974, 2938, 2188, 1195, 454, 112, 16, 1, 6918, 9891, 9846, 7698, 4677, 2118, 679, 144, 18, 1, 23714, 33604, 33549
Offset: 1

Views

Author

Vladimir Kruchinin, Nov 25 2011

Keywords

Comments

Triangle T(n,k)=
1. Riordan Array (1,(1-sqrt(1-4*x))/((1-x)*2)) without first column.
2. Riordan Array ((1-sqrt(1-4*x))/((1-x)*2*x),(1-sqrt(1-4*x))/((1-x)*2)) numbering triangle (0,0).
Convolution triangle of A014137(n). - Philippe Deléham, Jan 23 2014

Examples

			Triangle:
1,
2, 1,
4, 4, 1,
9, 12, 6, 1,
23, 34, 24, 8, 1,
65, 98, 83, 40, 10, 1,
197, 294, 273, 164, 60, 12, 1
		

Crossrefs

Cf. Columns: A014137, A014143

Programs

  • Mathematica
    T[n_, k_]:= (k/n) (Binomial[-1 - k + 2 n, -1 + n] HypergeometricPFQ[{k, k - n, -n}, {1/2 + k/2 - n, 1 + k/2 - n}, 1/4]);
    Table[T[n, k], {n, 1, 9}, {k, 1, n}] // TableForm (* Peter Luschny, May 30 2022 *)
  • Maxima
    T(n,k):=k*sum((binomial(i+k-1,k-1)*binomial(2*(n-i)-k-1,n-i-1))/(n-i),i,0,n-k);

Formula

T(n,k):=k*sum(i=0..n-k, (binomial(i+k-1,k-1)*binomial(2*(n-i)-k-1,n-i-1))/(n-i)).