cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A201013 Triangular array read by rows: T(n,k) is the number of 2-regular labeled graphs on n nodes that have exactly k connected components (cycles); n>=3, 1<=k<=floor(n/3).

Original entry on oeis.org

1, 3, 12, 60, 10, 360, 105, 2520, 987, 20160, 9576, 280, 181440, 99144, 6300, 1814400, 1104840, 107415, 19958400, 13262040, 1708245, 15400, 239500800, 171119520, 27042444, 600600, 3113510400, 2366076960, 437729292, 16186170, 43589145600, 34941291840, 7335055728, 382056675, 1401400
Offset: 3

Views

Author

Geoffrey Critzer, Nov 25 2011

Keywords

Comments

A 2-regular labeled graph is a simple labeled graph such that every vertex has degree 2.

Examples

			1;
3;
12;
60,     10;
360,    105;
2520,   987;
20160,  9576,    280;
181440, 99144,   6300;
		

Crossrefs

Cf. A001205 (row sums), A001710(n-1) (first row).

Programs

  • Maple
    T:= proc(n, k) option remember; `if`(k=1, (n-1)!/2,
          add(binomial(n-1, j-1) *T(j,1) *T(n-j, k-1), j=3..n-3))
        end:
    seq(seq(T(n, k), k=1..n/3), n=3..14); # Alois P. Heinz, Nov 25 2011
  • Mathematica
    f[list_]:=Select[list,#>0&];Flatten[Drop[Map[f, a = Log[1/(1 - x)]/2 - x/2 - x^2/4; Range[0, 20]! CoefficientList[Series[Exp[y a], {x, 0, 20}], {x, y}]], 3]]

Formula

E.g.f.: exp(-xy/2-x^2y/4)/(1-x)^(y/2).
T(n,1) = (n-1)!/2, T(n,k) = Sum_{j=3..n-3} C(n-1,j-1)*T(j,1)*T(n-j,k-1) for k>1. - Alois P. Heinz, Nov 25 2011
Sum_{k=1..floor(n/3)} T(n,k)*2^k = A038205(n) the number of permutations with minimum cycle size of 3. - Geoffrey Critzer, Nov 05 2012