A201199 Triangle version of the array w(N,L) of the total number of round trips of length L on closed Laguerre graphs Lc_N.
1, 1, 2, 1, 4, 3, 1, 18, 9, 4, 1, 76, 53, 16, 5, 1, 322, 357, 120, 25, 6, 1, 1364, 2489, 1024, 233, 36, 7, 1, 5778, 17509, 9424, 2545, 404, 49, 8, 1, 24476, 123449, 89536, 29985, 5400, 645, 64, 9, 1, 103682, 870893, 862560, 367505, 78392, 10213, 968, 81, 10
Offset: 0
Examples
The array w(N,L) starts: N\L 0 1 2 3 4 5 6 ... 1: 1 1 1 1 1 1 1 2: 2 4 12 40 136 464 1584 3: 3 9 53 357 2489 17509 123449 4: 4 16 120 1024 9424 89536 862560 5: 5 25 233 2545 29985 367505 4599521 6: 6 36 404 5400 78392 1188336 18460016 7: 7 49 645 10213 176473 3195829 59473593 8: 8 64 968 17728 355536 7493504 162671840 9: 9 81 1385 28809 657953 15826041 392792273 ...The triangle a(K,N) = w(N,K-N+1) starts: K\N 1 2 3 4 5 6 7 8 9.. 0: 1 1: 1 2 2: 1 4 3 3: 1 18 9 4 4: 1 76 53 16 5 5: 1 322 357 120 25 6 6: 1 1364 2489 1024 233 36 7 7: 1 5778 17509 9424 2545 404 49 8 8: 1 24476 123449 89536 29985 5400 645 64 9 ... For the graph Lc_4, shown in the W. Lang link as Figure 4, the counting for round trips of length L=2 for each of the four vertices V_i, i=1..4, read from left to right, is as follows. V_1: 1+1+(1+1+2*1), V_2: 3+2*binomial(3,2)+1+(1+1+2*1), V_3: 5+2*binomial(5,2)+(1+1+2*1)+(3+2*binomial(3,2)), V_4: 7+2*binomial(7,2)+(3+2*binomial(3,2))+(1+1+2*1), this sums to the total number w(4,2)= 120 = a(5,4). Compared to the open L_4 graph (see the corresponding A201198 entry 4*28 = 112) one has to add 2*(1+1+2*1)=8 from the new two lines joining V_1 and V_4.
Links
Crossrefs
Cf. A201198 (open Laguerre graphs).
Formula
a(K,N) = w(N,K-N+1),K>=0, N=1,...,K+1, with w(N,L) the total number of round trips of length L on the closed Laguerre graph Lc_N described above in the comment section.
The o.g.f. of w(N,L) is: G(N,x)=y*(d/dx)Lac_N(x)/Lac_N(x) with y=1/x.
The characteristic polynomial Lac_N(x) has also been given in the comment section above.
Comments