A201198 Triangle version of the array w(N,L) of the average number of round trips of length L on Laguerre graphs L_N.
1, 1, 1, 1, 2, 1, 1, 6, 3, 1, 1, 20, 15, 4, 1, 1, 68, 87, 28, 5, 1, 1, 232, 531, 232, 45, 6, 1, 1, 792, 3303, 2056, 485, 66, 7, 1, 1, 2704, 20691, 18784, 5645, 876, 91, 8, 1, 1, 9232, 129951, 174112, 68245, 12636, 1435, 120, 9, 1
Offset: 0
Examples
The array w(N,L) starts: N\L 0 1 2 4 5 6 7 ... 1: 1 1 1 1 1 1 1 1 2: 1 2 6 20 68 232 792 2704 3: 1 3 15 87 531 3303 20691 129951 4: 1 4 28 232 2056 18784 174112 1625152 5: 1 5 45 485 5645 68245 841725 10495525 6: 1 6 66 876 12636 190296 2935656 45927216 7: 1 7 91 1435 24703 445627 8259727 155635459 8: 1 8 120 2192 43856 922048 19964736 440311936 9: 1 9 153 3177 72441 1739529 43098777 1089331497 ... The triangle a(K,N) = w(N,K-N+1) starts: K\N 1 2 3 4 5 6 7 8 9 10 ... 0: 1 1: 1 1 2: 1 2 1 3: 1 6 3 1 4: 1 20 15 4 1 5: 1 68 87 28 5 1 6: 1 232 531 232 45 6 1 7: 1 792 3303 2056 485 66 7 1 8: 1 2704 20691 18784 5645 876 91 8 1 9: 1 9232 129951 174112 68245 12636 1435 120 9 1 ... For the graph L_4, shown in the W. Lang link as Figure 3, the counting for round trips of length L=2 for each of the four vertices V_i, i=1..4, reads, from left to right, as follows. V_1: 1+1, V_2: 3+2*binomial(3,2)+1+(1+1+2*1), V_3: 5+2*binomial(5,2)+(1+1+2*1)+(3+2*binomial(3,2)), V_4: 7+2*binomial(7,2)+(3+2*binomial(3,2)), this sums to 112, hence the average number is w(4,2)= 112/4 = 28 = a(5,4).
Links
- Eric W. Weisstein, from MathWorld: Laguerre Polynomial.
- Wolfdieter Lang, Counting walks on Jacobi graphs: an application of orthogonal polynomials.
Crossrefs
A201199 (closed Laguerre graphs).
Formula
a(K,N) = w(N,K-N+1), with w(N,L) the total number of round trips of length L on the Laguerre graph L_N divided by N (average length L round trip numbers).
The definition of the graph L_N is given as a comment above.
The o.g.f. of w(N,L) is G(N,x) = (1/N)*y*(d/dx)La_N(x)/La_N(x)) with y=1/x. This can be written as
G(N,x)= 1 + N*La_{N-1}(1/x)/La_N(1/x), where La_N(x) are the monic Laguerre polynomials (see a comment above).
Comments