cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A201243 Number of ways to place 2 non-attacking ferses on an n X n board.

Original entry on oeis.org

0, 4, 28, 102, 268, 580, 1104, 1918, 3112, 4788, 7060, 10054, 13908, 18772, 24808, 32190, 41104, 51748, 64332, 79078, 96220, 116004, 138688, 164542, 193848, 226900, 264004, 305478, 351652, 402868, 459480, 521854, 590368, 665412, 747388, 836710, 933804, 1039108
Offset: 1

Views

Author

Vaclav Kotesovec, Nov 28 2011

Keywords

Comments

Fers is a leaper [1,1].

Crossrefs

Programs

  • Magma
    I:=[0, 4, 28, 102, 268]; [n le 5 select I[n] else 5*Self(n-1)-10*Self(n-2)+10*Self(n-3)-5*Self(n-4)+Self(n-5): n in [1..40]]; // Vincenzo Librandi, Apr 30 2013
    
  • Magma
    [(n-1)*(n^3+n^2-4*n+4)/2: n in [1..40]]; // Vincenzo Librandi, Apr 30 2013
  • Mathematica
    Table[(n - 1) (n^3 + n^2 - 4 n + 4) / 2, {n, 100}] (* Vincenzo Librandi, Apr 30 2013 *)
    LinearRecurrence[{5,-10,10,-5,1},{0,4,28,102,268},40] (* Harvey P. Dale, Dec 31 2014 *)

Formula

a(n) = 1/2*(n-1)*(n^3 + n^2 - 4n + 4) by C. Poisson, 1990.
G.f.: 2x^2*(x+1)*(x^2-2x-2)/(x-1)^5.
a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5). - Vincenzo Librandi, Apr 30 2013

A201244 Number of ways to place 3 non-attacking ferses on an n X n board.

Original entry on oeis.org

0, 0, 38, 340, 1630, 5552, 15210, 35828, 75530, 146240, 264702, 453620, 742918, 1171120, 1786850, 2650452, 3835730, 5431808, 7545110, 10301460, 13848302, 18357040, 24025498, 31080500, 39780570, 50418752, 63325550, 78871988, 97472790, 119589680, 145734802
Offset: 1

Views

Author

Vaclav Kotesovec, Nov 28 2011

Keywords

Comments

Fers is a leaper [1,1].

Crossrefs

Programs

  • Magma
    I:=[0, 0, 38, 340, 1630, 5552, 15210, 35828]; [n le 8 select I[n] else 7*Self(n-1)-21*Self(n-2)+35*Self(n-3)-35*Self(n-4)+21*Self(n-5)-7*Self(n-6)+Self(n-7): n in [1..40]]; // Vincenzo Librandi, Apr 30 2013
    
  • Magma
    [0] cat [(n-2)*(n^5+2*n^4-11*n^3 +2*n^2+54*n-60)/6: n in [2..35]]; // Vincenzo Librandi, Apr 30 2013
  • Mathematica
    CoefficientList[Series[- 2 x^2 (x^5 + 3 x^4 - 24 x^3 + 24 x^2 + 37 x + 19) / (x-1)^7, {x, 0, 40}], x] (* Vincenzo Librandi, Apr 30 2013 *)

Formula

a(n) = (n-2)*(n^5 + 2n^4 - 11n^3 + 2n^2 + 54n - 60)/6, n>=2.
G.f.: -2x^3*(x^5 + 3x^4 - 24x^3 + 24x^2 + 37x + 19)/(x-1)^7.
a(n) = 7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+21*a(n-5)-7*a(n-6)+a(n-7). - Vincenzo Librandi, Apr 30 2013

A201245 Number of ways to place 4 non-attacking ferses on an n X n board.

Original entry on oeis.org

0, 0, 29, 661, 6285, 35378, 143787, 468529, 1301351, 3202970, 7170593, 14872997, 28969129, 53527866, 94568255, 160741233, 264175507, 421511954, 655152581, 994751765, 1478979173, 2157585442, 3093803379, 4367119121, 6076449375, 8343762538, 11318183177
Offset: 1

Views

Author

Vaclav Kotesovec, Nov 28 2011

Keywords

Comments

Fers is a leaper [1,1].

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[- x^2 (2 x^8 - 55 x^7 + 230 x^6 - 254 x^5 - 225 x^4 + 173 x^3 + 1380 x^2 + 400 x + 29)/(x-1)^9, {x, 0, 40}], x] (* Vincenzo Librandi, Apr 30 2013 *)

Formula

a(n) = (n^8 - 30n^6 + 48n^5 + 299n^4 - 912n^3 - 462n^2 + 4368n - 4200)/24, n>=3.
G.f.: -x^3*(2*x^8 - 55*x^7 + 230*x^6 - 254*x^5 - 225*x^4 + 173*x^3 + 1380*x^2 + 400*x + 29)/(x-1)^9.

A201246 Number of ways to place 5 non-attacking ferses on an n X n board.

Original entry on oeis.org

0, 0, 12, 780, 16286, 159452, 992412, 4567836, 16959488, 53617596, 149618794, 377841356, 879314442, 1911495356, 3922051616, 7657895196, 14321764860, 25791609308, 44921419134, 75946019596, 125016699158, 200899440924, 315872975684, 486869916572, 736910896536
Offset: 1

Views

Author

Vaclav Kotesovec, Nov 28 2011

Keywords

Comments

Fers is a leaper [1,1].

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[2 x^2 (11 x^11 - 135 x^10 + 549 x^9 - 993 x^8 + 1172 x^7 - 2968 x^6 + 7085 x^5 - 4715x^4 - 10613 x^3 - 4183 x^2- 324 x - 6)/(x-1)^11, {x, 0, 40}], x] (* Vincenzo Librandi, Apr 30 2013 *)

Formula

a(n) = n^10/120 - 5n^8/12 + 2n^7/3 + 191n^6/24 - 24n^5 - 661n^4/12 + 880n^3/3 - 937n^2/15 - 1176n + 1436, n>=4.
G.f.: 2x^3*(11x^11 - 135x^10 + 549x^9 - 993x^8 + 1172x^7 - 2968x^6 + 7085x^5 - 4715x^4 - 10613x^3 - 4183x^2 - 324x - 6)/(x-1)^11.

A201248 Number of ways to place 7 non-attacking ferses on an n X n board.

Original entry on oeis.org

0, 0, 0, 216, 38070, 1314600, 21191208, 207830308, 1442794332, 7775083960, 34530764200, 131660992164, 443702617356, 1350258600008, 3771242866680, 9789675562020, 23856321869260, 55015308882264, 120855465245464, 254284702668580, 514791197224860, 1006655249550696
Offset: 1

Views

Author

Vaclav Kotesovec, Nov 28 2011

Keywords

Comments

Fers is a leaper [1,1].

Crossrefs

Formula

a(n) = n^14/5040 - n^12/48 + n^11/30 + 673n^10/720 - 17n^9/6 - 1019n^8/48 + 197n^7/2 + 9772n^6/45 - 3443n^5/2 + 47n^4/4 + 74259n^3/5 - 1816352n^2/105 - 49376n + 90660, n>=6.
G.f.: 2*x^4*(125*x^16 - 1785*x^15 + 11715*x^14 - 50121*x^13 + 158605*x^12 - 367485*x^11 + 570175*x^10 - 533381*x^9 + 460395*x^8 - 1262515*x^7 + 2731225*x^6 - 1795227*x^5 - 5484089*x^4 - 2685639*x^3 - 383115*x^2 - 17415*x - 108)/(x-1)^15.

A278685 Number of non-equivalent ways to place 6 non-attacking ferses on an n X n board.

Original entry on oeis.org

0, 0, 1, 76, 3773, 66201, 651193, 4318451, 21754341, 89267490, 312974387, 968069337, 2704548145, 6942663519, 16594368633, 37311795887, 79570707969, 162013125016, 316669793867, 596873304925, 1089009784181, 1929545889877, 3329316638249, 5607471933963, 9238336533613
Offset: 1

Views

Author

Heinrich Ludwig, Nov 26 2016

Keywords

Comments

A fers is a leaper [1, 1].
Rotations and reflections of placements are not counted. If they are to be counted, see A201247.

Examples

			There is 1 way to place 6 non-attacking ferses on a 3 X 3 board, rotations and reflections being ignored:
   XXX
   ...
   XXX
		

Crossrefs

Cf. A201247, A232567 (2 ferses), A278682 (3 ferses), A278683 (4 ferses), A278684 (5 ferses), A278686 (7 ferses), A278687, A278688.

Programs

  • PARI
    concat(vector(2), Vec(x^3*(1 +70*x +3325*x^2 +44193*x^3 +285774*x^4 +1018671*x^5 +2250048*x^6 +3090821*x^7 +2658486*x^8 +1198906*x^9 +139256*x^10 -84845*x^11 +22114*x^12 +28024*x^13 -6172*x^14 -5377*x^15 +485*x^16 +592*x^17 +199*x^18 -56*x^19 -44*x^20 +9*x^21) / ((1 -x)^13*(1 +x)^7) + O(x^30))) \\ Colin Barker, Dec 10 2016

Formula

a(n) = n^12 - 75*n^10 + 120*n^9 + 2305*n^8 - 6960*n^7 - 32008*n^6 + 152880*n^5 + 138204*n^4 - 1543560*n^3 + 1178528*n^2 + 5238720*n - 7977600 + IF(MOD(n, 2) = 1, 122*n^6 - 600*n^5 - 1645*n^4 + 14520*n^3 - 19447*n^2 - 30480*n + 81855)/5760 for n>=5.
a(n) = 6*a(n-1)-8*a(n-2)-22*a(n-3)+69*a(n-4)-8*a(n-5)-176*a(n-6)+168*a(n-7)+182*a(n-8)-364*a(n-9)+364*a(n-11)-182*a(n-12)-168*a(n-13)+176*a(n-14)+8*a(n-15)-69*a(n-16)+22*a(n-17)+8*a(n-18)-6*a(n-19)+*a(n-20) for n>=25.
G.f.: x^3*(1 +70*x +3325*x^2 +44193*x^3 +285774*x^4 +1018671*x^5 +2250048*x^6 +3090821*x^7 +2658486*x^8 +1198906*x^9 +139256*x^10 -84845*x^11 +22114*x^12 +28024*x^13 -6172*x^14 -5377*x^15 +485*x^16 +592*x^17 +199*x^18 -56*x^19 -44*x^20 +9*x^21) / ((1 -x)^13*(1 +x)^7). - Colin Barker, Dec 10 2016
Showing 1-6 of 6 results.