cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A201266 The seventh divisor of numbers with exactly 49 divisors.

Original entry on oeis.org

9, 16, 16, 27, 49, 22, 26, 81, 32, 125, 32, 81, 32, 81, 125, 81, 32, 32, 169, 81, 37, 343, 41, 289, 43, 87, 343, 93, 47, 361, 53, 111, 529, 59, 343, 61, 123, 129, 361, 64, 141, 64, 1331, 625, 64, 625, 64, 159, 529, 64, 177, 64, 183, 625, 1331, 64, 201, 64
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 29 2011

Keywords

Examples

			a(1) = A114334(7);
a(2) = A159765(7).
		

Crossrefs

Programs

  • Haskell
    a201266 n = [d | d <- [1..], a175755 n `mod` d == 0] !! 6
    
  • Python
    from math import isqrt
    from sympy import primepi, integer_nthroot, primerange, divisors
    def A201266(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n+x+(t:=primepi(s:=isqrt(y:=integer_nthroot(x,6)[0])))+(t*(t-1)>>1)-sum(primepi(y//k) for k in primerange(1, s+1))-primepi(integer_nthroot(x,48)[0]))
        return divisors(bisection(f,n,n))[6] # Chai Wah Wu, Feb 22 2025