A201266 The seventh divisor of numbers with exactly 49 divisors.
9, 16, 16, 27, 49, 22, 26, 81, 32, 125, 32, 81, 32, 81, 125, 81, 32, 32, 169, 81, 37, 343, 41, 289, 43, 87, 343, 93, 47, 361, 53, 111, 529, 59, 343, 61, 123, 129, 361, 64, 141, 64, 1331, 625, 64, 625, 64, 159, 529, 64, 177, 64, 183, 625, 1331, 64, 201, 64
Offset: 1
Keywords
Examples
a(1) = A114334(7); a(2) = A159765(7).
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
Programs
-
Haskell
a201266 n = [d | d <- [1..], a175755 n `mod` d == 0] !! 6
-
Python
from math import isqrt from sympy import primepi, integer_nthroot, primerange, divisors def A201266(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return int(n+x+(t:=primepi(s:=isqrt(y:=integer_nthroot(x,6)[0])))+(t*(t-1)>>1)-sum(primepi(y//k) for k in primerange(1, s+1))-primepi(integer_nthroot(x,48)[0])) return divisors(bisection(f,n,n))[6] # Chai Wah Wu, Feb 22 2025