A201376 Triangle read by rows: T(n,k) (0 <= k <= n) is the number of partitions of (n,k) into a sum of pairs.
1, 1, 2, 2, 4, 9, 3, 7, 16, 31, 5, 12, 29, 57, 109, 7, 19, 47, 97, 189, 339, 11, 30, 77, 162, 323, 589, 1043, 15, 45, 118, 257, 522, 975, 1752, 2998, 22, 67, 181, 401, 831, 1576, 2876, 4987, 8406, 30, 97, 267, 608, 1279, 2472, 4571, 8043, 13715, 22652, 42, 139, 392, 907, 1941, 3804, 7128, 12693, 21893, 36535, 59521
Offset: 0
Examples
Partitions of (3,1) into positive pairs, T(3,1) = 7: (3,1), (3,0) + (0,1), (2,1) + (1,0), (2,0) + (1,1), (2,0) + (1,0) + (0,1), (1,1) + (1,0) + (1,0), (1,0) + (1,0) + (1,0) + (0,1). First ten rows of triangle: 0: 1 1: 1 2 2: 2 4 9 3: 3 7 16 31 4: 5 12 29 57 109 5: 7 19 47 97 189 339 6: 11 30 77 162 323 589 1043 7: 15 45 118 257 522 975 1752 2998 8: 22 67 181 401 831 1576 2876 4987 8406 9: 30 97 267 608 1279 2472 4571 8043 13715 22652 X: 42 139 392 907 1941 3804 7128 12693 21893 36535 59521
Links
- Alois P. Heinz, Rows n = 0..140, flattened
- Reinhard Zumkeller, Haskell programs for A054225, A054242, A201376, A201377
Programs
-
Haskell
-- see link.
-
Mathematica
max = 10; se = Series[ Sum[ Log[1 - x^(n-k)*y^k], {n, 1, 2max }, {k, 0, n}], {x, 0, 2max }, {y, 0, 2max }]; coes = CoefficientList[ Series[ Exp[-se], {x, 0, 2max }, {y, 0, 2max }], {x, y}]; t[n_, k_] := coes[[n+1, k+1]]; Flatten[ Table[ t[n, k], {n, 0, max}, {k, 0, n}]] (* Jean-François Alcover, Dec 05 2011 *) p = 2; q = 3; b[n_, k_] := b[n, k] = If[n > k, 0, 1] + If[PrimeQ[n], 0, Sum[If[d > k, 0, b[n/d, d]], {d, DeleteCases[Divisors[n] , 1|n]}]]; t[n_, k_] := b[p^n*q^k, p^n*q^k]; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 13 2014, after Alois P. Heinz *)
Formula
For references, programs and g.f. see A054225.
Extensions
Entry revised by N. J. A. Sloane, Nov 30 2011
Comments