A201454 Triangle of denominators of dual coefficients of Faulhaber.
1, 3, 3, 5, 3, 15, 7, 5, 3, 105, 9, 21, 15, 9, 105, 11, 9, 21, 3, 9, 231, 13, 11, 3, 7, 5, 3, 15015, 15, 39, 165, 9, 15, 5, 45, 2145, 17, 5, 13, 55, 9, 15, 15, 45, 36465, 19, 17, 5, 13, 55, 3, 35, 1, 5, 969969, 21, 57, 17, 21, 13, 33, 63, 7, 5, 63, 4849845
Offset: 0
Examples
Triangle begins: 1; 3, 3; 5, 3, 15; 7, 5, 3, 10; 9, 21, 15, 9, 105; 11, 9, 21, 3, 9, 231; 13, 11, 3, 7, 5, 3, 15015; 15, 39, 165, 9, 15, 5, 45, 2145; 17, 5, 13, 55, 9, 15, 15, 45, 36465; 19, 17, 5, 13, 55, 3, 35, 1, 5, 969969; 21, 57, 17, 21, 13, 33, 63, 7, 5, 63, 4849845; etc.
Links
- Askar Dzhumadil'daev, Damir Yeliussizov, Power sums of binomial coefficients, Journal of Integer Sequences, 16 (2013), Article 13.1.6
Crossrefs
Cf. A201453.
Programs
-
Magma
[Denominator((1/(2*m-2*k+1))*&+[Binomial(m,2*k-i)*Binomial(2*m-2*k+i, i)*BernoulliNumber(i): i in [0..2*k]]): k in [0..m], m in [0..10]]; // Bruno Berselli, Jan 21 2013
-
Mathematica
f[m_, k_] := (1/(2*m - 2*k + 1))* Sum[Binomial[m, 2*k - i]*Binomial[2*m - 2*k + i, i]*BernoulliB[i], {i, 0, 2 k}]; a[m_, k_] := f[m, k] // Denominator; Table[a[m, k], {m, 0, 10}, {k, 0, m}] // Flatten (* Jean-François Alcover, Jan 18 2013 *)
Formula
a(m,k) = denominator(F(m,k)) with F(m,k) = (1/(2*m-2*k+1)) * sum(i=0..2*k, binomial(m,2*k-i) * binomial(2*m-2*k+i,i) * Bernoulli(i) ).
A recursion is given by F(x,0) = 1/(2*x+1) and 2*(m-k)*(2*m-2*k+1)*F(m,k)=2*m*(2*m-1)*F(m-1,k)+m*(m-1)*F(m-2,k-1).
Comments