cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A201458 Expansion of 1/((1-2*x)*(1-3*x+3*x^2)*(1-4*x+6*x^2-4*x^3)).

Original entry on oeis.org

1, 9, 46, 175, 551, 1520, 3811, 8921, 19922, 43211, 92363, 196608, 419295, 897565, 1926458, 4135255, 8854359, 18875392, 40024059, 84417521, 177221602, 370688979, 773342163, 1610612736, 3350668423, 6964989333, 14466833194, 30021724351, 62233946303
Offset: 0

Views

Author

Bruno Berselli, Dec 01 2011

Keywords

Crossrefs

Cf. for type of g.f.: A099855, with 1/((1-2*x+2*x^2)*(1-4*x+4*x^2)); A000581, with 1/((1-x)^2*(1-x)^3*(1-x)^4).

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-2*x)*(1-3*x+3*x^2)*(1-4*x+6*x^2-4*x^3))));
    
  • Mathematica
    CoefficientList[Series[1/((1-2*x)*(1-3*x+3*x^2)*(1-4*x+6*x^2-4*x^3)), {x, 0, 30}], x]
    LinearRecurrence[{9,-35,76,-98,72,-24},{1,9,46,175,551,1520},30] (* Harvey P. Dale, Feb 01 2012 *)
  • Maxima
    makelist(coeff(taylor(1/((1-2*x)*(1-3*x+3*x^2)*(1-4*x+6*x^2-4*x^3)), x, 0, n), x, n), n, 0, 29);
  • PARI
    Vec(1/((1-2*x)*(1-3*x+3*x^2)*(1-4*x+6*x^2-4*x^3))+O(x^30))
    

Formula

G.f.: 1/((1-2*x)^2*(1-2*x+2*x^2)*(1-3*x+3*x^2)) = 1/((1-2*x+2*x^2)*(1-3*x+3*x^2)*(1-4*x+4*x^2)).
a(n) = 9*a(n-1)-35*a(n-2)+76*a(n-3)-98*a(n-4)+72*a(n-5)-24*a(n-6) for a(-5)=a(-4)=a(-3)=a(-2)=a(-1)=0, a(0)=1.
a(n) = 8*2^n*(n+1)+2*((1-i)^(n-1)+(1+i)^(n-1))+((3+i*sqrt(3))/2)^(n+4)+((3-i*sqrt(3))/2)^(n+4), where i=sqrt(-1).