A201458 Expansion of 1/((1-2*x)*(1-3*x+3*x^2)*(1-4*x+6*x^2-4*x^3)).
1, 9, 46, 175, 551, 1520, 3811, 8921, 19922, 43211, 92363, 196608, 419295, 897565, 1926458, 4135255, 8854359, 18875392, 40024059, 84417521, 177221602, 370688979, 773342163, 1610612736, 3350668423, 6964989333, 14466833194, 30021724351, 62233946303
Offset: 0
Links
- Bruno Berselli, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (9,-35,76,-98,72,-24).
Crossrefs
Programs
-
Magma
m:=30; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-2*x)*(1-3*x+3*x^2)*(1-4*x+6*x^2-4*x^3)))); -
Mathematica
CoefficientList[Series[1/((1-2*x)*(1-3*x+3*x^2)*(1-4*x+6*x^2-4*x^3)), {x, 0, 30}], x] LinearRecurrence[{9,-35,76,-98,72,-24},{1,9,46,175,551,1520},30] (* Harvey P. Dale, Feb 01 2012 *)
-
Maxima
makelist(coeff(taylor(1/((1-2*x)*(1-3*x+3*x^2)*(1-4*x+6*x^2-4*x^3)), x, 0, n), x, n), n, 0, 29);
-
PARI
Vec(1/((1-2*x)*(1-3*x+3*x^2)*(1-4*x+6*x^2-4*x^3))+O(x^30))
Formula
G.f.: 1/((1-2*x)^2*(1-2*x+2*x^2)*(1-3*x+3*x^2)) = 1/((1-2*x+2*x^2)*(1-3*x+3*x^2)*(1-4*x+4*x^2)).
a(n) = 9*a(n-1)-35*a(n-2)+76*a(n-3)-98*a(n-4)+72*a(n-5)-24*a(n-6) for a(-5)=a(-4)=a(-3)=a(-2)=a(-1)=0, a(0)=1.
a(n) = 8*2^n*(n+1)+2*((1-i)^(n-1)+(1+i)^(n-1))+((3+i*sqrt(3))/2)^(n+4)+((3-i*sqrt(3))/2)^(n+4), where i=sqrt(-1).