A201461 Triangle read by rows: n-th row (n>=0) gives coefficients of the polynomial ((x+1)^(2^n) + (x-1)^(2^n))/2.
1, 1, 1, 1, 6, 1, 1, 28, 70, 28, 1, 1, 120, 1820, 8008, 12870, 8008, 1820, 120, 1, 1, 496, 35960, 906192, 10518300, 64512240, 225792840, 471435600, 601080390, 471435600, 225792840, 64512240, 10518300, 906192, 35960, 496, 1
Offset: 0
Examples
The first few polynomials are: 1, x^2 + 1, x^4 + 6*x^2 + 1, x^8 + 28*x^6 + 70*x^4 + 28*x^2 + 1, x^16 + 120*x^14 + 1820*x^12 + 8008*x^10 + 12870*x^8 + 8008*x^6 + 1820*x^4 + 120*x^2 + 1. The triangle of coefficients begins: [0] [1] [1] [1, 0, 1] [2] [1, 0, 6, 0, 1] [3] [1, 0, 28, 0, 70, 0, 28, 0, 1] [4] [1, 0, 120, 0, 1820, 0, 8008, 0, 12870, 0, 8008, 0, 1820, 0, 120, 0, 1] The triangle of nonzero coefficients begins: [0] 1 [1] 1, 1 [2] 1, 6, 1 [3] 1, 28, 70, 28, 1 [4] 1, 120, 1820, 8008, 12870, 8008, 1820, 120, 1 [5] 1, 496, 35960, 906192, 10518300, 64512240, 225792840, 471435600, 601080390, 471435600, 225792840, 64512240, 10518300, 906192, 35960, 496, 1 ...
Links
- Indranil Ghosh, Rows 0..11, flattened
- F. L. Bauer, Letters to the editor: An Infinite Product for Square-Rooting with Cubic Convergence, The Mathematical Intelligencer, Vol. 20, Issue 1, (1998), 12-14.
Programs
-
Mathematica
Flatten[Table[Binomial[2^n,2k],{n,0,6},{k,0,2^(n-1)}]] (* Indranil Ghosh, Feb 22 2017 *)
-
PARI
row(n) = my(v = Vec(((x+1)^(2^n)+(x-1)^(2^n))/2)); vector(#v\2 + 1, k, v[2*k-1]); \\ Michel Marcus, Jan 14 2017
-
PARI
T(n,k)=binomial(2^n,2*k); for(n=0,5,for(k=0,2^(n-1),print1(T(n,k),", "));print()); \\ Joerg Arndt, Jan 15 2017
-
SageMath
def A201461_polynomial(n): return expand(((x+1)^(2^n) + (x-1)^(2^n))/2) for n in range(6): print(A201461_polynomial(n)) for n in range(6): print(A201461_polynomial(n).list()) # coefficients for n in range(6): # depunched (not a mathematical operation) if n == 0: print([1]) else: print(A201461_polynomial(n).list()[::2]) # Peter Luschny, Jan 11 2021
Formula
T(n,k) = binomial(2^n,2*k). - Joerg Arndt, Jan 15 2017
Comments