cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A201461 Triangle read by rows: n-th row (n>=0) gives coefficients of the polynomial ((x+1)^(2^n) + (x-1)^(2^n))/2.

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 1, 28, 70, 28, 1, 1, 120, 1820, 8008, 12870, 8008, 1820, 120, 1, 1, 496, 35960, 906192, 10518300, 64512240, 225792840, 471435600, 601080390, 471435600, 225792840, 64512240, 10518300, 906192, 35960, 496, 1
Offset: 0

Views

Author

N. J. A. Sloane, Dec 01 2011

Keywords

Comments

Wanted: reference for the fact that these polynomials are irreducible. Washington, Cyclotomic Fields, perhaps?
The algorithm r(n) = (1/2)*(r(n-1) + A/r(n-1)), starting with r(0) = A, used for approximating sqrt(A), which is known as the Babylonian method or Hero's method after the first-century Greek mathematician Hero of Alexandria and which can be derived from Newton's method, generates fractions beginning with (A+1)/2, (A^2 + 6*A + 1)/(4*(A+1)), (A^4 + 28*A^3 + 70*A^2 + 28*A + 1)/(8*(A+1)*(A^2 + 6*A + 1)), ... This is p(n,sqrt(A))/(2^n*Product_{k=1..n-1} p(k,sqrt(A))) with the given polynomial p(n,x) = ((x+1)^(2^n) + (x-1)^(2^n))/2. - Martin Renner, Jan 11 2017
The quadratic coefficient of this polynomial is A006516(n), the even-indexed coefficients are binomial(2^n,2*k) or A086645(2^(n-1),k) for 0 <= k <= 2^(n-1), in each row the maximum central coefficient for n>=2 is A037293(n) or A000984(2^(n-1)). - Martin Renner, Jan 14 2017
T(n,k) and A281122 are a bisection of row 2^n of Pascal's triangle A007318. - Martin Renner, Jan 15 2017
For nonnegative real x, sqrt(x) = (2*x/(1 + x)) * (2*(1 + x)^2/(1 + 6*x + x^2)) * (2*(1 + 6*x + x^2)^2/(1 + 28*x + 70*x^2 + 28*x^3 + x^4)) * .... See Bauer. - Peter Bala, Jan 18 2022

Examples

			The first few polynomials are:
1,
x^2 + 1,
x^4 + 6*x^2 + 1,
x^8 + 28*x^6 + 70*x^4 + 28*x^2 + 1,
x^16 + 120*x^14 + 1820*x^12 + 8008*x^10 + 12870*x^8 + 8008*x^6 + 1820*x^4 + 120*x^2 + 1.
The triangle of coefficients begins:
[0] [1]
[1] [1, 0, 1]
[2] [1, 0, 6, 0, 1]
[3] [1, 0, 28, 0, 70, 0, 28, 0, 1]
[4] [1, 0, 120, 0, 1820, 0, 8008, 0, 12870, 0, 8008, 0, 1820, 0, 120, 0, 1]
The triangle of nonzero coefficients begins:
[0] 1
[1] 1, 1
[2] 1, 6, 1
[3] 1, 28, 70, 28, 1
[4] 1, 120, 1820, 8008, 12870, 8008, 1820, 120, 1
[5] 1, 496, 35960, 906192, 10518300, 64512240, 225792840, 471435600, 601080390, 471435600, 225792840, 64512240, 10518300, 906192, 35960, 496, 1
...
		

Crossrefs

Programs

  • Mathematica
    Flatten[Table[Binomial[2^n,2k],{n,0,6},{k,0,2^(n-1)}]] (* Indranil Ghosh, Feb 22 2017 *)
  • PARI
    row(n) = my(v = Vec(((x+1)^(2^n)+(x-1)^(2^n))/2)); vector(#v\2 + 1, k, v[2*k-1]); \\ Michel Marcus, Jan 14 2017
    
  • PARI
    T(n,k)=binomial(2^n,2*k);
    for(n=0,5,for(k=0,2^(n-1),print1(T(n,k),", "));print()); \\ Joerg Arndt, Jan 15 2017
    
  • SageMath
    def A201461_polynomial(n): return expand(((x+1)^(2^n) + (x-1)^(2^n))/2)
    for n in range(6): print(A201461_polynomial(n))
    for n in range(6): print(A201461_polynomial(n).list()) # coefficients
    for n in range(6): # depunched (not a mathematical operation)
        if n == 0: print([1])
        else: print(A201461_polynomial(n).list()[::2]) # Peter Luschny, Jan 11 2021

Formula

T(n,k) = binomial(2^n,2*k). - Joerg Arndt, Jan 15 2017