A201540 Number of ways to place n nonattacking knights on an n X n board.
1, 6, 36, 412, 9386, 257318, 8891854, 379978716, 19206532478, 1120204619108, 74113608972922, 5483225594409823, 448414229054798028, 40154319792412218900, 3906519894750904583838
Offset: 1
Links
- V. Kotesovec, Non-attacking chess pieces, 6ed, 2013, p. 293.
Crossrefs
Programs
-
Mathematica
b[n_, l_] := b[n, l] = Module[{d, f, g, k}, d = Length[l]/3; f = False; Which[n == 0, 1, l[[1 ;; d]] == Array[f&, d], b[n - 1, Join[l[[d + 1 ;; 3*d]], Array[True&, d]]], True, For[k = 1, ! l[[k]], k++]; g = ReplacePart[l, k -> f]; If[k > 1, g = ReplacePart[g, 2*d - 1 + k -> f]]; If[k < d, g = ReplacePart[g, 2*d + 1 + k -> f]]; If[k > 2, g = ReplacePart[g, d - 2 + k -> f]]; If[k < d - 1, g = ReplacePart[g, d + 2 + k -> f]]; Expand[b[n, ReplacePart[l, k -> f]] + b[n, g]*x]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][ b[n, Array[True&, n*3]]]; a[n_] := T[n][[n + 1]]; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 10}] (* Jean-François Alcover, Mar 29 2016, after Alois P. Heinz's code for A244081 *)
Formula
a(n) ~ n^(2n)/n!*exp(-9/2). - Vaclav Kotesovec, Nov 29 2011
Extensions
a(11) from Alois P. Heinz, Jun 19 2014
a(12)-a(13) from Vaclav Kotesovec, Jun 21 2014
a(14) from Vaclav Kotesovec, Aug 26 2016
a(15) from Vaclav Kotesovec, May 26 2021
Comments