A201563 Decimal expansion of greatest x satisfying x^2 + 1 = csc(x) and 0 < x < Pi.
3, 0, 4, 4, 0, 3, 0, 1, 6, 6, 1, 1, 9, 2, 3, 5, 2, 8, 1, 6, 2, 2, 9, 8, 3, 5, 4, 9, 8, 0, 1, 1, 0, 0, 7, 9, 0, 3, 6, 8, 8, 2, 8, 0, 4, 8, 6, 0, 0, 7, 4, 4, 4, 9, 6, 3, 6, 8, 1, 1, 0, 7, 1, 7, 1, 3, 0, 0, 5, 4, 3, 7, 6, 0, 8, 6, 7, 4, 0, 3, 4, 7, 2, 7, 6, 9, 7, 1, 2, 4, 3, 8, 5, 2, 4, 3, 1, 5, 6
Offset: 1
Examples
least: 0.71942129632741031571692297003733204908... greatest: 3.04403016611923528162298354980110079...
Links
Crossrefs
Cf. A201564.
Programs
-
Mathematica
a = 1; c = 1; f[x_] := a*x^2 + c; g[x_] := Csc[x] Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, .7, .8}, WorkingPrecision -> 110] RealDigits[r] (* A196825 *) r = x /. FindRoot[f[x] == g[x], {x, 3.0, 3.1}, WorkingPrecision -> 110] RealDigits[r] (* A201563 *)
-
PARI
a=1; c=1; solve(x=3, 3.1, a*x^2 + c - 1/sin(x)) \\ G. C. Greubel, Aug 21 2018
Comments