A201568 Decimal expansion of least x satisfying x^2 + 4 = csc(x) and 0 < x < Pi.
2, 4, 8, 7, 4, 9, 0, 0, 0, 7, 1, 6, 2, 9, 5, 9, 8, 5, 3, 6, 5, 2, 9, 2, 4, 0, 8, 3, 7, 1, 6, 9, 4, 1, 0, 3, 9, 7, 1, 7, 2, 2, 7, 0, 7, 8, 6, 8, 7, 3, 3, 4, 9, 6, 1, 4, 2, 4, 4, 2, 2, 3, 6, 6, 8, 1, 9, 7, 3, 6, 4, 6, 7, 3, 2, 3, 9, 3, 5, 8, 5, 8, 5, 1, 0, 8, 2, 9, 3, 6, 4, 2, 8, 2, 2, 8, 8, 8, 4
Offset: 0
Examples
least: 0.2487490007162959853652924083716941039... greatest: 3.0669301776557967159210627137381980...
Links
Crossrefs
Cf. A201564.
Programs
-
Mathematica
a = 1; c = 4; f[x_] := a*x^2 + c; g[x_] := Csc[x] Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, .2, .3}, WorkingPrecision -> 110] RealDigits[r] (* A201568 *) r = x /. FindRoot[f[x] == g[x], {x, 3.0, 3.1}, WorkingPrecision -> 110] RealDigits[r] (* A201569 *)
-
PARI
a=1; c=4; solve(x=0.2, .3, a*x^2 + c - 1/sin(x)) \\ G. C. Greubel, Aug 21 2018
Comments