A201579 Decimal expansion of least x satisfying x^2 + 9 = csc(x) and 0 < x < Pi.
1, 1, 1, 1, 8, 7, 6, 4, 9, 5, 3, 0, 3, 3, 6, 5, 5, 2, 4, 1, 1, 3, 2, 1, 6, 9, 1, 8, 0, 0, 6, 5, 7, 5, 3, 3, 6, 1, 1, 7, 8, 7, 3, 4, 2, 3, 4, 6, 0, 7, 0, 0, 3, 7, 0, 8, 5, 6, 9, 6, 1, 2, 1, 2, 7, 2, 8, 3, 8, 6, 1, 8, 4, 4, 7, 2, 8, 6, 5, 9, 0, 9, 2, 5, 8, 1, 7, 6, 4, 2, 8, 9, 2, 7, 5, 3, 2, 4, 7
Offset: 0
Examples
least: 0.111187649530336552411321691800657533611... greatest: 3.087609602783606133001190498846701507...
Links
Crossrefs
Cf. A201564.
Programs
-
Mathematica
a = 1; c = 9; f[x_] := a*x^2 + c; g[x_] := Csc[x] Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, .1, .2}, WorkingPrecision -> 110] RealDigits[r] (* A201579 *) r = x /. FindRoot[f[x] == g[x], {x, 3.0, 3.1}, WorkingPrecision -> 110] RealDigits[r] (* A201580 *)
-
PARI
a=1; c=9; solve(x=0.1, .2, a*x^2 + c - 1/sin(x)) \\ G. C. Greubel, Aug 21 2018
Comments