A201615 Decimal expansion of Sum_{n>=1} 1/F(n)^n, where F=A000045 (Fibonacci numbers).
2, 1, 3, 7, 6, 6, 9, 5, 0, 9, 6, 7, 2, 6, 9, 8, 4, 3, 3, 3, 1, 7, 1, 4, 9, 8, 1, 6, 9, 0, 3, 2, 6, 1, 9, 4, 1, 9, 0, 3, 9, 6, 6, 6, 3, 1, 7, 4, 4, 2, 0, 9, 7, 5, 8, 4, 7, 2, 1, 2, 1, 4, 7, 1, 0, 5, 2, 3, 8, 7, 1, 0, 1, 1, 6, 3, 4, 5, 5, 0, 5, 2, 5, 3, 9, 6, 5, 8, 8, 6, 2, 6, 3, 0, 5, 3, 3, 3, 6, 6, 0, 8, 6, 8, 0
Offset: 1
Examples
2.13766950967269843331714981... = 1/1^1 + 1/1^2+ 1/2^3+ 1/3^4 +1/5^5 +1/8^6 +...
Programs
-
Maple
with(combinat,fibonacci):Digits:=120:s:=sum( evalf(1/ fibonacci(n)^n),n=1..200):print(s):
-
Mathematica
digits = 105; NSum[1/Fibonacci[n]^n, {n, 1, Infinity}, NSumTerms -> digits, WorkingPrecision -> digits] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 21 2014 *)
-
PARI
suminf(n=1, 1/fibonacci(n)^n); \\ Michel Marcus, Feb 21 2014