cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A201641 Triangle read by rows, T(n,k) for 0<=k<=n, generalizes the colored Motzkin paths of A129400.

Original entry on oeis.org

1, 2, 1, 8, 4, 1, 32, 20, 6, 1, 144, 96, 36, 8, 1, 672, 480, 200, 56, 10, 1, 3264, 2432, 1104, 352, 80, 12, 1, 16256, 12544, 6048, 2128, 560, 108, 14, 1, 82688, 65536, 33152, 12544, 3680, 832, 140, 16, 1, 427520, 346368, 182016, 72960, 23232, 5904, 1176, 176, 18, 1
Offset: 0

Views

Author

Peter Luschny, Sep 20 2012

Keywords

Examples

			Triangle begins as:
[0] [1]
[1] [2, 1]
[2] [8, 4, 1]
[3] [32, 20, 6, 1]
[4] [144, 96, 36, 8, 1]
[5] [672, 480, 200, 56, 10, 1]
[6] [3264, 2432, 1104, 352, 80, 12, 1]
[7] [16256, 12544, 6048, 2128, 560, 108, 14, 1]
[8] [82688, 65536, 33152, 12544, 3680, 832, 140, 16, 1]
		

Crossrefs

Cf. A129400.

Programs

  • Magma
    [[k eq n select 1 else 2^(n-k)*((k+1)/(n+1))*(&+[(-1)^j* Binomial(n+1,j)*Binomial(2*n-k-3*j, n-k-3*j): j in [0..Floor((n-k)/3)]]) :k in [0..n]]: n in [0..10]]; // G. C. Greubel, Apr 05 2019
  • Maple
    T := (n, k) -> 2^n*add(binomial(n,j)*(binomial(n-j,j+k) - binomial(n-j, j+k+2)) *2^(-k), j=0..n); seq(seq(T(n,k), k=0..n), n=0..8); # Peter Luschny, Dec 31 2019
  • Mathematica
    T[n_, k_]:= If[k==n, 1, 2^(n-k)*((k+1)/(n+1))*Sum[(-1)^j*Binomial[n+1,j]* Binomial[2*n-k-3*j, n-k-3*j], {j, 0, Floor[(n-k)/3]}]];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] (* G. C. Greubel, Apr 04 2019 *)
  • Maxima
    T(n,k):=(k+1)/(n+1)*2^(n-k)*sum((-1)^j*binomial(n+1,j)*binomial(2*n-k-3*j,n-k-3*j),j,0,floor((n-k)/3)); /* Vladimir Kruchinin, Apr 06 2019 */
    
  • PARI
    {T(n,k) = if(k==n, 1, 2^(n-k)*((k+1)/(n+1))*sum(j=0, floor((n-k)/3), (-1)^j*binomial(n+1,j)*binomial(2*n-k-3*j, n-k-3*j)))};
    for(n=0,10, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Apr 04 2019
    
  • Sage
    def A201641_triangle(dim):
        M = matrix(ZZ,dim,dim)
        for n in range(dim): M[n,n] = 1
        for n in (1..dim-1):
            for k in (0..n-1):
                M[n,k] = M[n-1,k-1]+2*M[n-1,k]+4*M[n-1,k+1]
        return M
    A201641_triangle(9)
    
  • Sage
    @CachedFunction
    def T(n, k):
        if k==n: return 1
        else: return 2^(n-k)*((k+1)/(n+1))*sum((-1)^j*binomial(n+1,j)* binomial(2*n-k-3*j, n-k-3*j) for j in (0..floor((n-k)/3)))
    [[T(n,k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Apr 05 2019
    

Formula

Recurrence: T(0,0)=1, T(0,k)=0 for k>0 and for n>=1 T(n,k) = T(n-1,k-1) + 2*T(n-1,k) + 4*T(n-1,k+1).
T(n,k) = ((k+1)/(n+1))*2^(n-k)*Sum_{j=0..floor((n-k)/3)} (-1)^j*C(n+1,j) *C(2*n-k-3*j,n-k-3*j). - Vladimir Kruchinin, Apr 06 2019
T(n,k) = 2^n*Sum_{j=0..n} C(n,j)*(C(n-j, j+k) - C(n-j, j+k+2))*2^(-k). - Peter Luschny, Dec 31 2019