A201657 Decimal expansion of greatest x satisfying 8*x^2 = csc(x) and 0 < x < Pi.
3, 1, 2, 8, 8, 2, 3, 5, 7, 1, 9, 0, 1, 6, 5, 4, 9, 3, 7, 2, 7, 5, 7, 5, 2, 4, 8, 4, 7, 2, 5, 0, 2, 8, 8, 3, 2, 9, 3, 5, 6, 2, 6, 0, 4, 0, 3, 6, 8, 4, 2, 0, 1, 5, 6, 6, 1, 4, 6, 1, 4, 9, 2, 7, 1, 4, 3, 3, 7, 0, 1, 9, 7, 0, 0, 7, 8, 0, 2, 5, 0, 1, 7, 3, 4, 0, 2, 6, 9, 9, 5, 3, 8, 2, 2, 6, 2, 0, 0
Offset: 1
Examples
least: 0.507262199349103778265812147726404197638586... greatest: 3.128823571901654937275752484725028832935...
Links
Crossrefs
Cf. A201564.
Programs
-
Mathematica
a = 8; c = 0; f[x_] := a*x^2 + c; g[x_] := Csc[x] Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, .5, .6}, WorkingPrecision -> 110] RealDigits[r] (* A201656 *) r = x /. FindRoot[f[x] == g[x], {x, 3.1, 3.14}, WorkingPrecision -> 110] RealDigits[r] (* A201657 *)
-
PARI
a=8; c=0; solve(x=3, 3.14, a*x^2 + c - 1/sin(x)) \\ G. C. Greubel, Aug 23 2018
Comments