A201564 Decimal expansion of the least x satisfying x^2 + 2 = csc(x) and 0 < x < Pi.
4, 6, 7, 5, 8, 0, 9, 4, 4, 0, 6, 3, 4, 7, 1, 3, 6, 7, 3, 6, 1, 4, 1, 9, 2, 7, 0, 7, 6, 6, 8, 6, 5, 3, 8, 8, 5, 9, 4, 0, 2, 5, 3, 7, 2, 6, 6, 9, 2, 4, 9, 0, 6, 6, 7, 9, 2, 9, 5, 5, 6, 8, 3, 7, 6, 1, 2, 1, 9, 5, 2, 4, 9, 1, 3, 8, 9, 8, 3, 8, 0, 4, 3, 4, 5, 9, 4, 1, 1, 8, 5, 8, 8, 3, 2, 8, 8, 2, 4
Offset: 0
Examples
least: 0.4675809440634713673614192707668653885... greatest: 3.0531517225248702118041550531781137...
Links
Programs
-
Mathematica
(* Program 1: A201564, A201565 *) a = 1; c = 2; f[x_] := a*x^2 + c; g[x_] := Csc[x] Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, .46, .47}, WorkingPrecision -> 110] RealDigits[r] (* A201564 *) r = x /. FindRoot[f[x] == g[x], {x, 3.0, 3.1}, WorkingPrecision -> 110] RealDigits[r] (* A201565 *) (* Program 2: implicit surface of u*x^2+v=csc(x) *) f[{x_, u_, v_}] := u*x^2 + v - Csc[x]; t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, .1, 1}]}, {v, 0, 1}, {u, 2 + v, 10}]; ListPlot3D[Flatten[t, 1]] (* for A201564 *)
-
PARI
a=1; c=2; solve(x=0.4, 0.5, a*x^2 + c - 1/sin(x)) \\ G. C. Greubel, Aug 21 2018
Comments