cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 63 results. Next

A201568 Decimal expansion of least x satisfying x^2 + 4 = csc(x) and 0 < x < Pi.

Original entry on oeis.org

2, 4, 8, 7, 4, 9, 0, 0, 0, 7, 1, 6, 2, 9, 5, 9, 8, 5, 3, 6, 5, 2, 9, 2, 4, 0, 8, 3, 7, 1, 6, 9, 4, 1, 0, 3, 9, 7, 1, 7, 2, 2, 7, 0, 7, 8, 6, 8, 7, 3, 3, 4, 9, 6, 1, 4, 2, 4, 4, 2, 2, 3, 6, 6, 8, 1, 9, 7, 3, 6, 4, 6, 7, 3, 2, 3, 9, 3, 5, 8, 5, 8, 5, 1, 0, 8, 2, 9, 3, 6, 4, 2, 8, 2, 2, 8, 8, 8, 4
Offset: 0

Views

Author

Clark Kimberling, Dec 03 2011

Keywords

Comments

See A201564 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  0.2487490007162959853652924083716941039...
greatest:  3.0669301776557967159210627137381980...
		

Crossrefs

Cf. A201564.

Programs

  • Mathematica
    a = 1; c = 4;
    f[x_] := a*x^2 + c; g[x_] := Csc[x]
    Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .2, .3}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201568 *)
    r = x /. FindRoot[f[x] == g[x], {x, 3.0, 3.1}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201569 *)
  • PARI
    a=1; c=4; solve(x=0.2, .3, a*x^2 + c - 1/sin(x)) \\ G. C. Greubel, Aug 21 2018

A201578 Decimal expansion of least x satisfying x^2 + 10 = csc(x) and 0 < x < Pi.

Original entry on oeis.org

1, 0, 0, 0, 6, 6, 8, 8, 4, 0, 7, 2, 9, 1, 9, 3, 0, 9, 2, 7, 9, 8, 0, 5, 3, 8, 4, 4, 5, 9, 3, 8, 1, 1, 1, 5, 0, 6, 0, 7, 1, 7, 8, 5, 4, 6, 9, 8, 0, 2, 2, 5, 0, 0, 6, 0, 9, 9, 9, 8, 6, 7, 6, 2, 9, 6, 3, 7, 6, 9, 7, 5, 0, 6, 9, 5, 8, 2, 6, 1, 7, 7, 6, 0, 5, 8, 1, 0, 9, 3, 5, 5, 1, 2, 5, 2, 5, 1, 2
Offset: 0

Views

Author

Clark Kimberling, Dec 03 2011

Keywords

Comments

See A201564 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  0.100066884072919309279805384459381115060...
greatest:  3.090421270152151453651497443899920534...
		

Crossrefs

Cf. A201564.

Programs

  • Mathematica
    a = 1; c = 10;
    f[x_] := a*x^2 + c; g[x_] := Csc[x]
    Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .1, .2}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201578 *)
    r = x /. FindRoot[f[x] == g[x], {x, 3.0, 3.1}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201581 *)
  • PARI
    a=1; c=10; solve(x=0.1, 0.2, a*x^2 + c - 1/sin(x)) \\ G. C. Greubel, Aug 21 2018

A201567 Decimal expansion of greatest x satisfying x^2 + 3 = csc(x) and 0 < x < Pi.

Original entry on oeis.org

3, 0, 6, 0, 6, 4, 7, 6, 2, 1, 6, 7, 4, 3, 9, 0, 6, 4, 9, 4, 6, 7, 0, 2, 1, 0, 6, 1, 4, 4, 1, 5, 7, 5, 3, 7, 2, 7, 8, 8, 8, 9, 0, 1, 2, 3, 3, 7, 6, 9, 2, 2, 2, 7, 4, 3, 9, 7, 9, 9, 5, 2, 3, 0, 0, 1, 8, 8, 1, 8, 3, 7, 3, 7, 3, 6, 9, 0, 6, 0, 9, 4, 1, 8, 6, 6, 2, 9, 2, 4, 4, 0, 1, 7, 3, 8, 0, 7, 6
Offset: 1

Views

Author

Clark Kimberling, Dec 03 2011

Keywords

Comments

See A201564 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  0.3276482471136686780982477062098195298...
greatest:  3.0606476216743906494670210614415753...
		

Crossrefs

Cf. A201564.

Programs

  • Mathematica
    a = 1; c = 3;
    f[x_] := a*x^2 + c; g[x_] := Csc[x]
    Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .3, .4}, WorkingPrecision -> 110]
    RealDigits[r]    (* A201567 *)
    r = x /. FindRoot[f[x] == g[x], {x, 3.0, 3.1}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201568 *)
  • PARI
    a=1; c=3; solve(x=3, 3.1, a*x^2 + c - 1/sin(x)) \\ G. C. Greubel, Aug 21 2018

A201569 Decimal expansion of greatest x satisfying x^2 + 4 = csc(x) and 0 < x < Pi.

Original entry on oeis.org

3, 0, 6, 6, 9, 3, 0, 1, 7, 7, 6, 5, 5, 7, 9, 6, 7, 1, 5, 9, 2, 1, 0, 6, 2, 7, 1, 3, 7, 3, 8, 1, 9, 8, 0, 7, 6, 4, 5, 0, 3, 0, 6, 2, 1, 6, 7, 1, 9, 0, 4, 5, 6, 7, 5, 9, 0, 8, 5, 3, 0, 1, 7, 8, 9, 3, 4, 9, 7, 7, 9, 4, 1, 5, 5, 5, 0, 6, 8, 7, 0, 1, 3, 2, 5, 0, 4, 0, 0, 1, 4, 8, 0, 6, 4, 8, 0, 3, 1
Offset: 1

Views

Author

Clark Kimberling, Dec 03 2011

Keywords

Comments

See A201564 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  0.2487490007162959853652924083716941039...
greatest:  3.0669301776557967159210627137381980...
		

Crossrefs

Cf. A201564.

Programs

  • Mathematica
    a = 1; c = 4;
    f[x_] := a*x^2 + c; g[x_] := Csc[x]
    Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .2, .3}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201568 *)
    r = x /. FindRoot[f[x] == g[x], {x, 3.0, 3.1}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201569 *)
  • PARI
    a=1; c=4; solve(x=3, 3.1, a*x^2 + c - 1/sin(x)) \\ G. C. Greubel, Aug 21 2018

A201570 Decimal expansion of least x satisfying x^2 + 5 = csc(x) and 0 < x < Pi.

Original entry on oeis.org

1, 9, 9, 7, 4, 2, 2, 9, 2, 8, 1, 9, 4, 7, 2, 1, 3, 7, 0, 8, 6, 7, 4, 0, 5, 1, 5, 9, 5, 5, 3, 4, 8, 1, 1, 4, 5, 3, 2, 5, 4, 5, 4, 4, 3, 9, 0, 3, 2, 5, 3, 2, 4, 3, 3, 4, 5, 3, 8, 3, 3, 5, 7, 7, 9, 2, 2, 9, 6, 3, 1, 0, 3, 9, 3, 7, 2, 6, 7, 6, 1, 4, 9, 0, 4, 3, 4, 8, 2, 7, 7, 7, 7, 7, 5, 6, 0, 7, 1
Offset: 0

Views

Author

Clark Kimberling, Dec 03 2011

Keywords

Comments

See A201564 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  0.19974229281947213708674051595534811453...
greatest:  3.07227983005125033585986646046469906...
		

Crossrefs

Cf. A201564.

Programs

  • Mathematica
    a = 1; c = 5;
    f[x_] := a*x^2 + c; g[x_] := Csc[x]
    Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .1, .2}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201570 *)
    r = x /. FindRoot[f[x] == g[x], {x, 3.0, 3.1}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201571 *)
  • PARI
    a=1; c=5; solve(x=0.1, 0.2, a*x^2 + c - 1/sin(x)) \\ G. C. Greubel, Aug 21 2018

A201571 Decimal expansion of greatest x satisfying x^2 + 5 = csc(x) and 0 < x < Pi.

Original entry on oeis.org

3, 0, 7, 2, 2, 7, 9, 8, 3, 0, 0, 5, 1, 2, 5, 0, 3, 3, 5, 8, 5, 9, 8, 6, 6, 4, 6, 0, 4, 6, 4, 6, 9, 9, 0, 6, 0, 3, 6, 3, 7, 2, 9, 1, 3, 7, 8, 0, 4, 8, 4, 8, 3, 4, 3, 3, 0, 6, 3, 1, 4, 0, 6, 9, 7, 8, 4, 5, 2, 0, 7, 7, 8, 5, 0, 3, 1, 7, 1, 7, 0, 5, 5, 2, 3, 2, 0, 3, 8, 1, 8, 3, 5, 8, 4, 0, 9, 6, 1
Offset: 1

Views

Author

Clark Kimberling, Dec 03 2011

Keywords

Comments

See A201564 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  0.19974229281947213708674051595534811453...
greatest:  3.07227983005125033585986646046469906...
		

Crossrefs

Cf. A201564.

Programs

  • Mathematica
    a = 1; c = 5;
    f[x_] := a*x^2 + c; g[x_] := Csc[x]
    Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .1, .2}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201570 *)
    r = x /. FindRoot[f[x] == g[x], {x, 3.0, 3.1}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201571 *)
  • PARI
    a=1; c=5; solve(x=3, 3.1, a*x^2 + c - 1/sin(x)) \\ G. C. Greubel, Aug 21 2018

A201572 Decimal expansion of least x satisfying x^2 + 6 = csc(x) and 0 < x < Pi.

Original entry on oeis.org

1, 6, 6, 6, 6, 9, 1, 6, 3, 1, 7, 5, 4, 0, 0, 9, 4, 9, 5, 6, 5, 2, 0, 0, 3, 2, 0, 6, 2, 7, 7, 6, 1, 2, 9, 9, 1, 5, 8, 1, 6, 7, 6, 7, 4, 4, 7, 5, 4, 0, 3, 4, 4, 9, 3, 4, 8, 0, 4, 8, 4, 6, 7, 5, 6, 4, 4, 2, 3, 4, 9, 3, 7, 1, 3, 9, 6, 9, 9, 0, 8, 9, 8, 0, 2, 6, 1, 8, 0, 1, 5, 2, 8, 3, 7, 0, 8, 7, 0, 8, 0
Offset: 0

Views

Author

Clark Kimberling, Dec 03 2011

Keywords

Comments

See A201564 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  0.166669163175400949565200320627761299158167...
greatest:  3.076894929246192023166693647327725773248...
		

Crossrefs

Cf. A201564.

Programs

  • Mathematica
    a = 1; c = 6;
    f[x_] := a*x^2 + c; g[x_] := Csc[x]
    Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .1, .2}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201572 *)
    r = x /. FindRoot[f[x] == g[x], {x, 3.0, 3.1}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201573 *)
  • PARI
    a=1; c=6; solve(x=0.1, .2, a*x^2 + c - 1/sin(x)) \\ G. C. Greubel, Aug 21 2018

Extensions

Terms a(83) onward corrected by G. C. Greubel, Aug 21 2018

A201573 Decimal expansion of greatest x satisfying x^2 + 6 = csc(x) and 0 < x < Pi.

Original entry on oeis.org

3, 0, 7, 6, 8, 9, 4, 9, 2, 9, 2, 4, 6, 1, 9, 2, 0, 2, 3, 1, 6, 6, 6, 9, 3, 6, 4, 7, 3, 2, 7, 7, 2, 5, 7, 7, 3, 2, 4, 8, 4, 1, 9, 8, 0, 6, 5, 8, 2, 3, 7, 4, 3, 2, 0, 1, 5, 8, 3, 9, 9, 5, 2, 4, 3, 9, 9, 1, 1, 1, 5, 7, 6, 0, 6, 3, 1, 5, 1, 1, 6, 6, 3, 2, 3, 5, 4, 5, 1, 8, 1, 1, 9, 1, 2, 3, 5, 6, 5, 9
Offset: 1

Views

Author

Clark Kimberling, Dec 03 2011

Keywords

Comments

See A201564 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  0.166669163175400949565200320627761299158167...
greatest:  3.076894929246192023166693647327725773248...
		

Crossrefs

Cf. A201564.

Programs

  • Mathematica
    a = 1; c = 6;
    f[x_] := a*x^2 + c; g[x_] := Csc[x]
    Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .1, .2}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201572 *)
    r = x /. FindRoot[f[x] == g[x], {x, 3.0, 3.1}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201573 *)
  • PARI
    a=1; c=6; solve(x=3, 3.1, a*x^2 + c - 1/sin(x)) \\ G. C. Greubel, Aug 21 2018

Extensions

Terms a(87) onward corrected by G. C. Greubel, Aug 21 2018

A201574 Decimal expansion of least x satisfying x^2 + 7 = csc(x) and 0 < x < Pi.

Original entry on oeis.org

1, 4, 2, 9, 2, 7, 5, 8, 2, 9, 9, 3, 9, 2, 0, 8, 6, 7, 0, 0, 4, 3, 1, 0, 4, 4, 3, 0, 7, 5, 5, 4, 7, 4, 8, 2, 4, 0, 8, 8, 4, 3, 5, 1, 3, 9, 9, 1, 0, 5, 0, 9, 4, 5, 4, 0, 2, 7, 8, 5, 0, 1, 0, 4, 5, 9, 2, 8, 5, 0, 3, 0, 7, 9, 5, 5, 0, 5, 9, 4, 2, 2, 7, 2, 6, 3, 9, 7, 7, 6, 0, 5, 3, 6, 5, 1, 6, 0, 8
Offset: 0

Views

Author

Clark Kimberling, Dec 03 2011

Keywords

Comments

See A201564 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  0.14292758299392086700431044307554748240884...
greatest:  3.08092023229520680455935849821275370108...
		

Crossrefs

Cf. A201564.

Programs

  • Mathematica
    a = 1; c = 7;
    f[x_] := a*x^2 + c; g[x_] := Csc[x]
    Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .1, .2}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201574 *)
    r = x /. FindRoot[f[x] == g[x], {x, 3.0, 3.1}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201575 *)
  • PARI
    a=1; c=7; solve(x=0.1, .2, a*x^2 + c - 1/sin(x)) \\ G. C. Greubel, Aug 21 2018

A201575 Decimal expansion of greatest x satisfying x^2 + 7 = csc(x) and 0 < x < Pi.

Original entry on oeis.org

3, 0, 8, 0, 9, 2, 0, 2, 3, 2, 2, 9, 5, 2, 0, 6, 8, 0, 4, 5, 5, 9, 3, 5, 8, 4, 9, 8, 2, 1, 2, 7, 5, 3, 7, 0, 1, 0, 8, 7, 2, 6, 9, 9, 6, 9, 0, 8, 2, 4, 2, 1, 1, 8, 5, 7, 5, 7, 2, 2, 8, 1, 7, 4, 8, 5, 3, 8, 9, 4, 3, 8, 2, 4, 7, 7, 5, 0, 5, 0, 9, 0, 3, 9, 8, 7, 9, 1, 5, 9, 7, 4, 0, 2, 6, 4, 8, 9, 4
Offset: 1

Views

Author

Clark Kimberling, Dec 03 2011

Keywords

Comments

See A201564 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  0.14292758299392086700431044307554748240884...
greatest:  3.08092023229520680455935849821275370108...
		

Crossrefs

Cf. A201564.

Programs

  • Mathematica
    a = 1; c = 7;
    f[x_] := a*x^2 + c; g[x_] := Csc[x]
    Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .1, .2}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201574 *)
    r = x /. FindRoot[f[x] == g[x], {x, 3.0, 3.1}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201575 *)
  • PARI
    a=1; c=7; solve(x=3, 3.1, a*x^2 + c - 1/sin(x)) \\ G. C. Greubel, Aug 21 2018
Showing 1-10 of 63 results. Next