A201675
Decimal expansion of greatest x satisfying 7*x^2 - 1 = csc(x) and 0
3, 1, 2, 6, 7, 6, 3, 3, 5, 4, 8, 1, 7, 8, 4, 3, 9, 5, 8, 3, 2, 4, 7, 1, 0, 5, 4, 3, 0, 4, 1, 3, 9, 3, 5, 0, 0, 8, 6, 9, 5, 6, 0, 6, 7, 8, 0, 4, 2, 4, 0, 6, 1, 3, 9, 9, 3, 3, 0, 3, 2, 1, 0, 4, 5, 3, 3, 0, 3, 9, 5, 9, 0, 7, 3, 7, 1, 4, 3, 9, 0, 9, 5, 1, 1, 5, 5, 1, 5, 2, 7, 8, 9, 8, 4, 2, 3, 6, 0
Offset: 1
Examples
least: 0.62272709431369510379503993928652289013... greatest: 3.12676335481784395832471054304139350...
Links
Crossrefs
Cf. A201564.
Programs
-
Mathematica
a = 7; c = -1; f[x_] := a*x^2 + c; g[x_] := Csc[x] Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, .6, .7}, WorkingPrecision -> 110] RealDigits[r] (* A201674 *) r = x /. FindRoot[f[x] == g[x], {x, 3.0, 3.14}, WorkingPrecision -> 110] RealDigits[r] (* A201675 *)
-
PARI
a=7; c=-1; solve(x=3, 3.14, a*x^2 + c - 1/sin(x)) \\ G. C. Greubel, Sep 12 2018
Comments