A201689 Number of involutions avoiding the pattern 21 (with a dot over the 1).
1, 0, 1, 1, 4, 9, 31, 94, 337, 1185, 4540, 17581, 71875, 299646, 1299637, 5760973, 26357764, 123241185, 591877543, 2902472734, 14571525145, 74613410169, 390197960716, 2078859419077, 11290463266843, 62400316038462, 351037047533581, 2007507147853429
Offset: 0
Keywords
Examples
G.f.: 1 + x^2 + x^3 + 4*x^4 + 9*x^5 + 31*x^6 + 94*x^7 + 337*x^8 + ...
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..800
- J.-L. Baril, Classical sequences revisited with permutations avoiding dotted pattern, Electronic Journal of Combinatorics, 18 (2011), #P178. See Theorem 7 and Table 3.
Programs
-
Maple
b:= proc(n) option remember; `if`(n<1, 1, b(n-1)+(n-1)*b(n-2)) end: a:= proc(n) option remember; b(n)-add(a(r)*b(n-1-r), r=0..n-1) end: seq(a(n), n=0..28); # Alois P. Heinz, Jan 10 2022
-
Mathematica
b[n_] := b[n] = If[n < 1, 1, b[n - 1] + (n - 1)*b[n - 2]]; a[n_] := a[n] = b[n] - Sum[a[r]*b[n - 1 - r], {r, 0, n - 1}]; Table[a[n], {n, 0, 28}] (* Jean-François Alcover, Apr 14 2022, after Alois P. Heinz *)
-
PARI
seq(n)={my(g=serlaplace(exp(x+x^2/2 + O(x*x^n)))); Vec(g/(1 + x*g))} \\ Andrew Howroyd, Jan 10 2022
Formula
G.f.: 1/(G(0)+x), where G(k) = 1 - x - x^2*(k+1)/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Dec 15 2011
G.f.: B(x)/(1+x*B(x)) where B(x) is the o.g.f. for A000085. - Michael D. Weiner, Jan 10 2022
From Alois P. Heinz, Jan 10 2022: (Start)
a(n) mod 2 = A204418(n). (End)
Extensions
a(0)=1 prepended by Andrew Howroyd, Jan 10 2022
Comments