cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A201689 Number of involutions avoiding the pattern 21 (with a dot over the 1).

Original entry on oeis.org

1, 0, 1, 1, 4, 9, 31, 94, 337, 1185, 4540, 17581, 71875, 299646, 1299637, 5760973, 26357764, 123241185, 591877543, 2902472734, 14571525145, 74613410169, 390197960716, 2078859419077, 11290463266843, 62400316038462, 351037047533581, 2007507147853429
Offset: 0

Views

Author

N. J. A. Sloane, Dec 03 2011

Keywords

Comments

Baril gives a formula for a(n), but when I evaluate it I get A201687, not the values shown here.

Examples

			G.f.: 1 + x^2 + x^3 + 4*x^4 + 9*x^5 + 31*x^6 + 94*x^7 + 337*x^8 + ...
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n<1, 1, b(n-1)+(n-1)*b(n-2)) end:
    a:= proc(n) option remember; b(n)-add(a(r)*b(n-1-r), r=0..n-1) end:
    seq(a(n), n=0..28);  # Alois P. Heinz, Jan 10 2022
  • Mathematica
    b[n_] := b[n] = If[n < 1, 1, b[n - 1] + (n - 1)*b[n - 2]];
    a[n_] := a[n] = b[n] - Sum[a[r]*b[n - 1 - r], {r, 0, n - 1}];
    Table[a[n], {n, 0, 28}] (* Jean-François Alcover, Apr 14 2022, after Alois P. Heinz *)
  • PARI
    seq(n)={my(g=serlaplace(exp(x+x^2/2 + O(x*x^n)))); Vec(g/(1 + x*g))} \\ Andrew Howroyd, Jan 10 2022

Formula

G.f.: 1/(G(0)+x), where G(k) = 1 - x - x^2*(k+1)/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Dec 15 2011
G.f.: B(x)/(1+x*B(x)) where B(x) is the o.g.f. for A000085. - Michael D. Weiner, Jan 10 2022
From Alois P. Heinz, Jan 10 2022: (Start)
a(n) = A000085(n) - Sum_{r=0..n-1} a(r)*A000085(n-1-r). [from Baril, corrected]
a(n) mod 2 = A204418(n). (End)

Extensions

a(0)=1 prepended by Andrew Howroyd, Jan 10 2022