cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A201715 Primes of the form 3*m^2 - 2.

Original entry on oeis.org

73, 241, 673, 1321, 1873, 2521, 3673, 4561, 6073, 11161, 14281, 15121, 19681, 21673, 23761, 24841, 27073, 29401, 33073, 49921, 51481, 54673, 63073, 66601, 72073, 77761, 87721, 91873, 102673, 109441, 114073, 118801, 131041, 143881
Offset: 1

Views

Author

Vincenzo Librandi, Dec 04 2011

Keywords

Comments

Primes p such that 3*(p+2) or (p+2)/3 is a square. - Vincenzo Librandi, Feb 16 2016
m is a member of A063213. - Bruno Berselli, Feb 16 2016

Crossrefs

Programs

  • Magma
    [a: n in [1..300] | IsPrime(a) where a is 3*n^2-2];
  • Mathematica
    Select[Table[3 n^2 - 2, {n, 1, 800}], PrimeQ]

A201717 Primes of the form 3*m^2 - 5.

Original entry on oeis.org

7, 43, 103, 967, 1447, 1723, 2347, 3067, 3463, 4327, 6343, 6907, 9403, 11527, 13063, 21163, 23227, 28807, 32443, 33703, 44647, 47623, 52267, 65707, 71143, 74887, 80683, 88747, 90823, 99367, 110587, 137383, 142567, 150523, 175687
Offset: 1

Views

Author

Vincenzo Librandi, Dec 05 2011

Keywords

Comments

Primes p such that 3*(p+5) or (p+5)/3 is a square. - Vincenzo Librandi, Feb 16 2016

Crossrefs

Cf. A000040, A042993 (supersequence).
Cf. similar sequences: A089682, A201715, A201716, A201718, A201781.

Programs

  • Magma
    [a: n in [2..300] | IsPrime(a) where a is 3*n^2-5];
  • Mathematica
    Select[Table[3n^2-5,{n,2,1000}],PrimeQ]

A201718 Primes of the form 3*m^2 - 7.

Original entry on oeis.org

5, 41, 101, 293, 761, 1193, 1721, 2693, 3461, 3881, 4793, 5801, 8741, 12281, 16421, 17321, 26501, 32441, 36293, 40361, 53861, 62201, 67493, 80681, 86693, 90821, 92921, 101561, 108293, 112901, 119993, 127301, 145193, 167081, 178601, 193541
Offset: 1

Views

Author

Vincenzo Librandi, Dec 05 2011

Keywords

Comments

Primes p such that (p+7)/3 or 3*(p+7) is a square. - Vincenzo Librandi, Feb 16 2016

Crossrefs

Programs

  • Magma
    [a: n in [2..300] | IsPrime(a) where a is 3*n^2-7];
  • Mathematica
    Select[Table[3 n^2 - 7, {n, 2, 1000}], PrimeQ]

A201781 Primes of the form 3*m^2 - 8.

Original entry on oeis.org

19, 67, 139, 499, 859, 1579, 1867, 2179, 3259, 4099, 6067, 6619, 8419, 9067, 9739, 22699, 25939, 27067, 28219, 38299, 39667, 46867, 54667, 56299, 61339, 63067, 73939, 79699, 81667, 89779, 91867, 93979, 100459, 102667, 114067, 123619
Offset: 1

Views

Author

Vincenzo Librandi, Dec 05 2011

Keywords

Comments

m is a member of A063241. - Bruno Berselli, Feb 16 2016

Crossrefs

Programs

  • Magma
    [a: n in [2..300] | IsPrime(a) where a is 3*n^2-8];
  • Mathematica
    Select[Table[3n^2 - 8, {n, 2, 1000}], PrimeQ]

A262203 Primes of the form k*(k+2)/3 - 3, k>2.

Original entry on oeis.org

2, 5, 13, 37, 53, 173, 277, 317, 557, 613, 733, 797, 1237, 1493, 1973, 2293, 3533, 4253, 4877, 5717, 9293, 9973, 12157, 12413, 14557, 16573, 17477, 19037, 20333, 22013, 23053, 26317, 26693, 30197, 32237, 32653, 33493, 37853, 40597, 44893, 50957, 53597, 54133
Offset: 1

Views

Author

Vincenzo Librandi, Dec 05 2015

Keywords

Comments

Primes p such that 3*p + 10 is a square.

Examples

			a(1) = 2 because 2*3 + 10 = 16, which is a square.
a(1) = 2 because 3*(3 + 2)/3 - 3 = 2 is prime.
		

Crossrefs

Programs

  • Magma
    [a: k in [2..250] | IsPrime(a) where a is k*(k+2) div 3 - 3 ];
    
  • Magma
    [p: p in PrimesUpTo(60000) | IsSquare(3*p+10)];
    
  • Mathematica
    Select[Table[(k (k + 2))/3 - 3, {k, 2, 450}], PrimeQ]
  • PARI
    forprime(p=2, 1e5, if(issquare(3*p+10), print1(p , ", "))) \\ Altug Alkan, Dec 05 2015
Showing 1-5 of 5 results.