cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A201719 Primes of the form x^2 + 2y^2 such that y^2 + 2x^2 is also prime.

Original entry on oeis.org

11, 19, 43, 59, 67, 83, 107, 139, 163, 179, 211, 251, 307, 331, 419, 443, 467, 491, 563, 571, 587, 619, 643, 811, 883, 907, 947, 971, 1019, 1091, 1123, 1171, 1259, 1291, 1307, 1427, 1531, 1571, 1579, 1667, 1699, 1747, 1787, 1811, 1907, 1979, 1987, 2003, 2011
Offset: 1

Views

Author

Zak Seidov, Dec 04 2011

Keywords

Comments

All terms == 3 mod 8 (cf. A007520).

Examples

			Corresponding pairs of primes:
(a(1),a(2))=(11,19): 11=3^2+2*1^2, 19=1^2+2*3^2
(a(3),a(4))=(43,59): 43=5^2+2*3^2, 59=3^2+2*5^2
(a(5),a(7))=(67,107): 67=7^2+2*3^2, 107=3^2+2*7^2.
		

Crossrefs

Cf. A154777.

Programs

  • Mathematica
    With[{nn=50},Take[Union[Flatten[Select[{#[[1]]^2+2#[[2]]^2,2#[[1]]^2+ #[[2]]^2}&/@Subsets[Range[nn],{2}],And@@PrimeQ[#]&]]],nn]] (* Harvey P. Dale, Sep 15 2013 *)