A201719 Primes of the form x^2 + 2y^2 such that y^2 + 2x^2 is also prime.
11, 19, 43, 59, 67, 83, 107, 139, 163, 179, 211, 251, 307, 331, 419, 443, 467, 491, 563, 571, 587, 619, 643, 811, 883, 907, 947, 971, 1019, 1091, 1123, 1171, 1259, 1291, 1307, 1427, 1531, 1571, 1579, 1667, 1699, 1747, 1787, 1811, 1907, 1979, 1987, 2003, 2011
Offset: 1
Keywords
Examples
Corresponding pairs of primes: (a(1),a(2))=(11,19): 11=3^2+2*1^2, 19=1^2+2*3^2 (a(3),a(4))=(43,59): 43=5^2+2*3^2, 59=3^2+2*5^2 (a(5),a(7))=(67,107): 67=7^2+2*3^2, 107=3^2+2*7^2.
Links
- Zak Seidov, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A154777.
Programs
-
Mathematica
With[{nn=50},Take[Union[Flatten[Select[{#[[1]]^2+2#[[2]]^2,2#[[1]]^2+ #[[2]]^2}&/@Subsets[Range[nn],{2}],And@@PrimeQ[#]&]]],nn]] (* Harvey P. Dale, Sep 15 2013 *)
Comments