cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A202476 G.f.: Sum_{n>=0} x^n * Product_{k=1..n} (1 + k*x + x^2).

Original entry on oeis.org

1, 1, 2, 5, 11, 28, 74, 206, 601, 1826, 5766, 18851, 63676, 221678, 793958, 2920292, 11014653, 42543773, 168074091, 678403932, 2794920078, 11742254750, 50266213000, 219085792538, 971543475593, 4380664101448, 20071848941411, 93403455862117, 441206005123701
Offset: 0

Views

Author

Paul D. Hanna, Dec 19 2011

Keywords

Examples

			The coefficients in Product_{k=1..n} (1+k*x+x^2), n>=0, form the triangle:
[1];
[1, 1, 1];
[1, 3, 4, 3, 1];
[1, 6, 14, 18, 14, 6, 1];
[1, 10, 39, 80, 100, 80, 39, 10, 1];
[1, 15, 90, 285, 539, 660, 539, 285, 90, 15, 1];
[1, 21, 181, 840, 2339, 4179, 5038, 4179, 2339, 840, 181, 21, 1];
[1, 28, 329, 2128, 8400, 21392, 36630, 43624, 36630, 21392, 8400, 2128, 329, 28, 1]; ...
the antidiagonal sums of which form this sequence.
		

Crossrefs

Programs

  • PARI
    {a(n)=sum(k=0,n,polcoeff(prod(j=1,n-k,1+j*x+x^2),k))}
    
  • PARI
    {a(n)=local(CF=1+x+x*O(x^n)); for(k=1, n-1, CF=(1+(n-k)*x+x^2)/(1 + x*(1+(n-k)*x+x^2) - x*CF+x*O(x^n))); polcoeff(1/(1-x*CF), n)}

Formula

Antidiagonal sums of the irregular triangle in which row n is defined by the g.f.: Product_{k=1..n} (1 + k*x + x^2) for n>=0.
G.f.: 1/(1 - x*(1+x+x^2)/(1 + x*(1+x+x^2) - x*(1+2*x+x^2)/(1 + x*(1+2*x+x^2) - x*(1+3*x+x^2)/(1 + x*(1+3*x+x^2) - x*(1+4*x+x^2)/(1 + x*(1+4*x+x^2) -...))))), a continued fraction.

A249790 Triangle in which row n lists the coefficients in Product_{k=1..n} (1 + k*x + x^2), for n>=0, as read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 4, 3, 1, 1, 6, 14, 18, 14, 6, 1, 1, 10, 39, 80, 100, 80, 39, 10, 1, 1, 15, 90, 285, 539, 660, 539, 285, 90, 15, 1, 1, 21, 181, 840, 2339, 4179, 5038, 4179, 2339, 840, 181, 21, 1, 1, 28, 329, 2128, 8400, 21392, 36630, 43624, 36630, 21392, 8400, 2128, 329, 28, 1, 1, 36, 554, 4788, 25753, 90720, 216166, 358056, 422252
Offset: 0

Views

Author

Paul D. Hanna, Nov 05 2014

Keywords

Examples

			Triangle begins:
1;
1, 1, 1;
1, 3, 4, 3, 1;
1, 6, 14, 18, 14, 6, 1;
1, 10, 39, 80, 100, 80, 39, 10, 1;
1, 15, 90, 285, 539, 660, 539, 285, 90, 15, 1;
1, 21, 181, 840, 2339, 4179, 5038, 4179, 2339, 840, 181, 21, 1;
1, 28, 329, 2128, 8400, 21392, 36630, 43624, 36630, 21392, 8400, 2128, 329, 28, 1;
1, 36, 554, 4788, 25753, 90720, 216166, 358056, 422252, 358056, 216166, 90720, 25753, 4788, 554, 36, 1;
1, 45, 879, 9810, 69399, 327285, 1058399, 2394270, 3860922, 4516380, 3860922, 2394270, 1058399, 327285, 69399, 9810, 879, 45, 1;
1, 55, 1330, 18645, 168378, 1031085, 4400648, 13305545, 28862021, 45519870, 52885644, 45519870, 28862021, 13305545, 4400648, 1031085, 168378, 18645, 1330, 55, 1; ...
		

Crossrefs

Cf. A201826 (central coefficients), A202474 (a diagonal), A202476, A001710 (row sums).
Cf. A201949 (variant), A324956.

Programs

  • PARI
    {T(n,k)=polcoeff(prod(m=1, n, 1 + m*x + x^2 +x*O(x^k)), k,x)}
    for(n=0,10,for(k=0,2*n,print1(T(n,k),", "));print(""))

Formula

E.g.f.: 1/(1 - x*y)^(1/y + 1 + y). - Paul D. Hanna, Mar 02 2019
E.g.f.: A(x,y) = 1/(1-x*y) * Sum_{k>=0} (1/y^k + y^k)/2^(0^k) * Sum_{n>=0} (-log(1 - x*y))^(2*n+k) / (n!*(n+k)!). - Paul D. Hanna, Mar 02 2019
E.g.f. of diagonal k: (1/y^k)/(1-x*y) * Sum_{n>=0} (-log(1 - x*y))^(2*n+k) / (n!*(n+k)!) for k >= 0. - Paul D. Hanna, Mar 02 2019
E.g.f.: A(x,y) = x / Series_Reversion( F(x,y) ) such that F(x/A(x,y),y) = x, where F(x,y) = Sum_{n>=1} x^n/n! * Product_{k=0..n-2} (n + (n+k)*y + n*y^2). - Paul D. Hanna, Mar 02 2019

A202474 Coefficients of y^(n-1) in Product_{k=1..n} (1 + k*y + y^2) for n >= 1.

Original entry on oeis.org

1, 3, 14, 80, 539, 4179, 36630, 358056, 3860922, 45519870, 582466235, 8038684290, 119018991779, 1881685721265, 31638175704546, 563703015007056, 10609073237333432, 210305960538762456, 4379808881917047898, 95604092878386437940, 2182706554812339958778
Offset: 1

Views

Author

Paul D. Hanna, Dec 19 2011

Keywords

Examples

			E.g.f.: A(x) = x + 3*x^2/2! + 14*x^3/3! + 80*x^4/4! + 539*x^5/5! + 4179*x^6/6! + 36630*x^7/7! + 358056*x^8/8! + 3860922*x^9/9! + 45519870*x^10/10! + ...
The coefficients in Product_{k=1..n} (1+k*x+x^2), n>=0, form the triangle:
[1];
[(1), 1, 1];
[1,(3), 4, 3, 1];
[1, 6, (14), 18, 14, 6, 1];
[1, 10, 39, (80), 100, 80, 39, 10, 1];
[1, 15, 90, 285, (539), 660, 539, 285, 90, 15, 1];
[1, 21, 181, 840, 2339, (4179), 5038, 4179, 2339, 840, 181, 21, 1];
[1, 28, 329, 2128, 8400, 21392, (36630), 43624, 36630, 21392, 8400, 2128, 329, 28, 1]; ...
the coefficients in parenthesis form the initial terms of this sequence.
		

Crossrefs

Programs

  • Mathematica
    Flatten[{1,Table[Coefficient[Expand[Product[1 + k*x + x^2,{k,1,n+1}]],x^n],{n,1,20}]}] (* Vaclav Kotesovec, Feb 10 2015 *)
  • PARI
    {a(n) = polcoeff(prod(k=1,n,1 + k*x + x^2 +x*O(x^n)),n-1)}
    for(n=1,30,print1(a(n),", "))

Formula

E.g.f.: 1/(1-x) * Sum_{n>=0} log(1 - x)^(2*n+1) / (n!*(n+1)!).

Extensions

Changed offset to 1 to agree with e.g.f. - Paul D. Hanna, Mar 02 2019
Showing 1-3 of 3 results.