A201826
Central coefficients in Product_{k=1..n} (1 + k*y + y^2).
Original entry on oeis.org
1, 1, 4, 18, 100, 660, 5038, 43624, 422252, 4516380, 52885644, 672781824, 9238314358, 136175455234, 2144494356834, 35930786795040, 638168940129732, 11976278012219556, 236791150694618872, 4919643784275283480, 107152493449339765396, 2441410548192907949196
Offset: 0
E.g.f.: A(x) = 1 + x + 4*x^2/2! + 18*x^3/3! + 100*x^4/4! + 660*x^5/5! + 5038*x^6/6! + 43624*x^7/7! + 422252*x^8/8! + 4516380*x^9/9! + 52885644*x^10/10! + ...
The coefficients in Product_{k=1..n} (1 + k*y + y^2), n>=0, form triangle A249790:
[1];
[1, 1, 1];
[1, 3, 4, 3, 1];
[1, 6, 14, 18, 14, 6, 1];
[1, 10, 39, 80, 100, 80, 39, 10, 1];
[1, 15, 90, 285, 539, 660, 539, 285, 90, 15, 1];
[1, 21, 181, 840, 2339, 4179, 5038, 4179, 2339, 840, 181, 21, 1];
[1, 28, 329, 2128, 8400, 21392, 36630, 43624, 36630, 21392, 8400, 2128, 329, 28, 1]; ...
in which the central terms of the rows form this sequence.
-
Flatten[{1,Table[Coefficient[Expand[Product[1 + k*x + x^2,{k,1,n}]],x^n],{n,1,20}]}] (* Vaclav Kotesovec, Feb 10 2015 *)
-
{a(n) = polcoeff(prod(k=1,n, 1 + k*x + x^2 +x*O(x^n)), n)}
for(n=0, 30, print1(a(n), ", "))
-
{a(n) = n!*polcoeff( sum(m=0, n, log(1 - x +x*O(x^n))^(2*m)/m!^2 ) / (1 - x +x*O(x^n)), n)}
for(n=0, 30, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 02 2019
A324956
Triangle of coefficients T(n,k) of y^n in Product_{k=0..n-2} (n + (n + k)*y + n*y^2), as read by rows of terms k = 0..2*n-2, for n >= 1.
Original entry on oeis.org
1, 2, 2, 2, 9, 21, 30, 21, 9, 64, 240, 488, 600, 488, 240, 64, 625, 3250, 8775, 15080, 17980, 15080, 8775, 3250, 625, 7776, 51840, 176040, 387360, 606384, 701280, 606384, 387360, 176040, 51840, 7776, 117649, 957999, 3935239, 10557540, 20437361, 29924601, 33904822, 29924601, 20437361, 10557540, 3935239, 957999, 117649, 2097152, 20185088, 97484800, 308768768, 711782400, 1258039552, 1753753728, 1956209024, 1753753728, 1258039552, 711782400, 308768768, 97484800, 20185088, 2097152
Offset: 1
E.g.f.: A(x,y) = Sum_{n>=0} x^n/n! * Sum_{k=0..2*n-2} T(n,k)*y^k starts
A(x) = x + (2*y^2 + 2*y + 2)*x^2/2! + (9*y^4 + 21*y^3 + 30*y^2 + 21*y + 9)*x^3/3! + (64*y^6 + 240*y^5 + 488*y^4 + 600*y^3 + 488*y^2 + 240*y + 64)*x^4/4! + (625*y^8 + 3250*y^7 + 8775*y^6 + 15080*y^5 + 17980*y^4 + 15080*y^3 + 8775*y^2 + 3250*y + 625)*x^5/5! + (7776*y^10 + 51840*y^9 + 176040*y^8 + 387360*y^7 + 606384*y^6 + 701280*y^5 + 606384*y^4 + 387360*y^3 + 176040*y^2 + 51840*y + 7776)*x^6/6! + (117649*y^12 + 957999*y^11 + 3935239*y^10 + 10557540*y^9 + 20437361*y^8 + 29924601*y^7 + 33904822*y^6 + 29924601*y^5 + 20437361*y^4 + 10557540*y^3 + 3935239*y^2 + 957999*y + 117649)*x^7/7! + (2097152*y^14 + 20185088*y^13 + 97484800*y^12 + 308768768*y^11 + 711782400*y^10 + 1258039552*y^9 + 1753753728*y^8 + 1956209024*y^7 + 1753753728*y^6 + 1258039552*y^5 + 711782400*y^4 + 308768768*y^3 + 97484800*y^2 + 20185088*y + 2097152)*x^8/8! + ...
This triangle of coefficients T(n,k) of x^n*y^k/n! in A(x,y) begins:
1;
2, 2, 2;
9, 21, 30, 21, 9;
64, 240, 488, 600, 488, 240, 64;
625, 3250, 8775, 15080, 17980, 15080, 8775, 3250, 625;
7776, 51840, 176040, 387360, 606384, 701280, 606384, 387360, 176040, 51840, 7776;
117649, 957999, 3935239, 10557540, 20437361, 29924601, 33904822, 29924601, 20437361, 10557540, 3935239, 957999, 117649;
2097152, 20185088, 97484800, 308768768, 711782400, 1258039552, 1753753728, 1956209024, 1753753728, 1258039552, 711782400, 308768768, 97484800, 20185088, 2097152; ...
-
{T(n, k) = polcoeff(prod(m=0, n-2, n + (n+m)*y + n*y^2 +y*O(y^k)), k, y)}
for(n=1, 10, for(k=0, 2*n-2, print1(T(n, k), ", ")); print(""))
-
{T(n,k) = my(A = serreverse( x*(1 - x*y +x*O(x^n) )^(1/y+1+y)));
n!*polcoeff(polcoeff(A,n,x),k,y)}
for(n=1, 10, for(k=0, 2*n-2, print1(T(n, k), ", ")); print(""))
A324960
Triangle of coefficients T(n,k) of y^k in Product_{k=0..n-1} (1 + (k+2)*y + y^2), read by rows of terms k = 0..2*n, for n >= 0.
Original entry on oeis.org
1, 1, 2, 1, 1, 5, 8, 5, 1, 1, 9, 29, 42, 29, 9, 1, 1, 14, 75, 196, 268, 196, 75, 14, 1, 1, 20, 160, 660, 1519, 2000, 1519, 660, 160, 20, 1, 1, 27, 301, 1800, 6299, 13293, 17038, 13293, 6299, 1800, 301, 27, 1, 1, 35, 518, 4235, 21000, 65485, 129681, 162890, 129681, 65485, 21000, 4235, 518, 35, 1, 1, 44, 834, 8932, 59633, 258720, 740046, 1395504, 1725372, 1395504, 740046, 258720, 59633, 8932, 834, 44, 1, 1, 54, 1275, 17316, 149787, 863982, 3386879, 9054684, 16420458, 20044728, 16420458, 9054684, 3386879, 863982, 149787, 17316, 1275, 54, 1
Offset: 0
E.g.f.: A(x,y) = Sum_{n>=0} x^n/n! * Sum_{k=0..2*n} T(n,k)*y^k starts
A(x,y) = 1 + (y^2 + 2*y + 1)*x + (y^4 + 5*y^3 + 8*y^2 + 5*y + 1)*x^2/2! + (y^6 + 9*y^5 + 29*y^4 + 42*y^3 + 29*y^2 + 9*y + 1)*x^3/3! + (y^8 + 14*y^7 + 75*y^6 + 196*y^5 + 268*y^4 + 196*y^3 + 75*y^2 + 14*y + 1)*x^4/4! + (y^10 + 20*y^9 + 160*y^8 + 660*y^7 + 1519*y^6 + 2000*y^5 + 1519*y^4 + 660*y^3 + 160*y^2 + 20*y + 1)*x^5/5! + (y^12 + 27*y^11 + 301*y^10 + 1800*y^9 + 6299*y^8 + 13293*y^7 + 17038*y^6 + 13293*y^5 + 6299*y^4 + 1800*y^3 + 301*y^2 + 27*y + 1)*x^6/6! + (y^14 + 35*y^13 + 518*y^12 + 4235*y^11 + 21000*y^10 + 65485*y^9 + 129681*y^8 + 162890*y^7 + 129681*y^6 + 65485*y^5 + 21000*y^4 + 4235*y^3 + 518*y^2 + 35*y + 1)*x^7/7! + (y^16 + 44*y^15 + 834*y^14 + 8932*y^13 + 59633*y^12 + 258720*y^11 + 740046*y^10 + 1395504*y^9 + 1725372*y^8 + 1395504*y^7 + 740046*y^6 + 258720*y^5 + 59633*y^4 + 8932*y^3 + 834*y^2 + 44*y + 1)*x^8/8! + ...
This triangle of coefficients T(n,k) of x^n*y^k/n! in A(x,y) begins:
1;
1, 2, 1;
1, 5, 8, 5, 1;
1, 9, 29, 42, 29, 9, 1;
1, 14, 75, 196, 268, 196, 75, 14, 1;
1, 20, 160, 660, 1519, 2000, 1519, 660, 160, 20, 1;
1, 27, 301, 1800, 6299, 13293, 17038, 13293, 6299, 1800, 301, 27, 1;
1, 35, 518, 4235, 21000, 65485, 129681, 162890, 129681, 65485, 21000, 4235, 518, 35, 1;
1, 44, 834, 8932, 59633, 258720, 740046, 1395504, 1725372, 1395504, 740046, 258720, 59633, 8932, 834, 44, 1;
1, 54, 1275, 17316, 149787, 863982, 3386879, 9054684, 16420458, 20044728, 16420458, 9054684, 3386879, 863982, 149787, 17316, 1275, 54, 1; ...
-
{T(n, k) = polcoeff( prod(m=0, n-1, 1 + (m+2)*y + y^2 +x*O(x^k)), k, y)}
for(n=0, 10, for(k=0, 2*n, print1(T(n, k), ", ")); print(""))
-
{T(n, k) = n!*polcoeff(polcoeff( 1/(1 - x*y +x*O(x^n) )^((1+y)^2/y),n, x), k, y)}
for(n=0, 10, for(k=0, 2*n, print1(T(n, k), ", ")); print(""))
Showing 1-3 of 3 results.