A201908 Irregular triangle of 2^k mod (2n-1).
0, 1, 2, 1, 2, 4, 3, 1, 2, 4, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 5, 10, 9, 7, 3, 6, 1, 2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1, 2, 4, 8, 1, 2, 4, 8, 16, 15, 13, 9, 1, 2, 4, 8, 16, 13, 7, 14, 9, 18, 17, 15, 11, 3, 6, 12, 5, 10, 1, 2, 4, 8, 16, 11, 1, 2, 4, 8, 16, 9
Offset: 1
Examples
The irregular triangle T(n, k) begins: n\k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 ... --------------------------------------------------------- 1: 0 2: 1 2 3: 1 2 4 3 4: 1 2 4 5: 1 2 4 8 7 5 6: 1 2 4 8 5 10 9 7 3 6 7: 1 2 4 8 3 6 12 11 9 5 10 7 8: 1 2 4 8 9: 1 2 4 8 16 15 13 9 10: 1 2 4 8 16 13 7 14 9 18 17 15 11 3 6 12 5 10 ... reformatted by _Wolfdieter Lang_, Jul 29 2020.
References
- Robert L. Devaney, A First Course in Chaotic Dynamical Systems, Addison-Wesley., 1992. pp. 24-25
Links
- T. D. Noe, Rows n = 1..100, flattened
Crossrefs
Cf. A000034 (3), A070402 (5), A069705 (7), A036117 (11), A036118 (13), A062116 (17), A036120 (19), A070347 (21), A070335 (23), A070336 (25), A070337 (27), A036122 (29), A070338 (33), A070339 (35), A036124 (37), A070340 (39), A070348 (41), A070349 (43), A070350 (45), A070351 (47), A036128 (53), A036129 (59), A036130 (61), A036131 (67), A036135 (83), A036138 (101), A036140 (107), A201920 (125), A036144 (131), A036146 (139), A036147 (149), A036150 (163), A036152 (173), A036153 (179), A036154 (181), A036157 (197), A036159 (211), A036161 (227).
Programs
-
GAP
R:=List([0..72],n->OrderMod(2,2*n+1));; Flat(Concatenation([0],List([2..11],n->List([0..R[n]-1],k->PowerMod(2,k,2*n-1))))); # Muniru A Asiru, Feb 02 2019
-
Mathematica
nn = 30; p = 2; t = p^Range[0, nn]; Flatten[Table[If[IntegerQ[Log[p, n]], {0}, tm = Mod[t, n]; len = Position[tm, 1, 1, 2][[-1,1]]; Take[tm, len-1]], {n, 1, nn, 2}]]
Formula
T(n, k) = 2^k mod (2*n-1), n >= 1, k = 0, 1, ..., A002326(n-1) - 1.
T(n, k) = (2*n-1)*frac(2^k/(2*n-1)), n >= 1, k = 0, 1, ..., A002326(n-1) - 1, with the fractional part frac(x) = x - floor(x). - Wolfdieter Lang, Jul 29 2020
Comments