cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A201912 Irregular triangle of 2^k mod prime(n).

Original entry on oeis.org

0, 1, 2, 1, 2, 4, 3, 1, 2, 4, 1, 2, 4, 8, 5, 10, 9, 7, 3, 6, 1, 2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1, 2, 4, 8, 16, 15, 13, 9, 1, 2, 4, 8, 16, 13, 7, 14, 9, 18, 17, 15, 11, 3, 6, 12, 5, 10, 1, 2, 4, 8, 16, 9, 18, 13, 3, 6, 12, 1, 2, 4, 8, 16, 3, 6, 12, 24
Offset: 1

Views

Author

T. D. Noe, Dec 17 2011

Keywords

Comments

The row lengths are in A014664. For n > 1, the first term of each row is 1 and the last term is 2*prime(n)-1, which is A006254. Many sequences are in this one.

Examples

			The first 11 rows are:
2:  0;
3:  1, 2;
5:  1, 2, 4, 3;
7:  1, 2, 4;
11: 1, 2, 4, 8,  5, 10,  9,  7,  3,  6;
13: 1, 2, 4, 8,  3,  6, 12, 11,  9,  5, 10,  7;
17: 1, 2, 4, 8, 16, 15, 13,  9;
19: 1, 2, 4, 8, 16, 13,  7, 14,  9, 18, 17, 15, 11,  3,  6, 12,  5, 10;
23: 1, 2, 4, 8, 16,  9, 18, 13,  3,  6, 12;
29: 1, 2, 4, 8, 16,  3,  6, 12, 24, 19,  9, 18,  7, 14, 28, 27, 25, 21, 13, 26, 23, 17, 5, 10, 20, 11, 22, 15;
31: 1, 2, 4, 8, 16;
		

Crossrefs

Cf. similar sequences of the type 2^n mod p, where p is a prime: A000034 (p=3), A070402 (p=5), A069705 (p=7), A036117 (p=11), A036118 (p=13), A062116 (p=17), A036120 (p=19), A070335 (p=23), A036122 (p=29), A269266 (p=31), A036124 (p=37), A070348 (p=41), A070349 (p=43), A070351 (p=47), A036128 (p=53), A036129 (p=59), A036130 (p=61), A036131 (p=67), A036135 (p=83), A036138 (p=101), A036140 (p=107), A036144 (p=131), A036146 (p=139), A036147 (p=149), A036150 (p=163), A036152 (p=173), A036153 (p=179), A036154 (p=181), A036157 (p=197), A036159 (p=211), A036161 (p=227).

Programs

  • GAP
    P:=Filtered([1..350],IsPrime);;
    R:=List([1..Length(P)],n->OrderMod(2,P[n]));;
    Flat(Concatenation([0],List([2..10],n->List([0..R[n]-1],k->PowerMod(2,k,P[n]))))); # Muniru A Asiru, Feb 01 2019
  • Mathematica
    nn = 10; p = 2; t = p^Range[0,Prime[nn]]; Flatten[Table[If[Mod[n, p] == 0, {0}, tm = Mod[t, n]; len = Position[tm, 1, 1, 2][[-1,1]]; Take[tm, len-1]], {n, Prime[Range[nn]]}]]