A007368 Smallest k such that sigma(x) = k has exactly n solutions.
2, 1, 12, 24, 96, 72, 168, 240, 336, 360, 504, 576, 1512, 1080, 1008, 720, 2304, 3600, 5376, 2520, 2160, 1440, 10416, 13392, 3360, 4032, 3024, 7056, 6720, 2880, 6480, 10800, 13104, 5040, 6048, 4320, 13440, 5760, 18720, 20736, 19152, 22680, 43680
Offset: 0
Keywords
Examples
a(10) = 504; {204, 220, 224, 246, 284, 286, 334, 415, 451, 503} is the set of x such that sigma(x) = 504.
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe and Donovan Johnson, Table of n, a(n) for n = 0..5000 (terms up to a(429) from T. D. Noe)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Kevin Ford, Sergei Konyagin, On two conjectures of Sierpiński concerning the arithmetic functions σ and ϕ, arXiv:1910.08452 [math.NT], 2019.
- W. Sierpiński, Elementary Theory of Numbers, Warszawa 1964, page 166.
- R. G. Wilson, V, Letter to N. J. A. Sloane, Jul. 1992
Crossrefs
Cf. A115374 (least prime p such that sigma(x)=sigma(p) has exactly n solutions).
Programs
-
Mathematica
Needs["Statistics`DataManipulation`"]; s=DivisorSigma[1, Range[10^5]]; f=Frequencies[s]; fs=Sort[f]; tfs=Transpose[fs][[1]]; utfs=Union[tfs]; firstMissing=First[Complement[Range[Last[utfs]], utfs]]; pos=1; Table[While[tfs[[pos]]
T. D. Noe *) terms = 100; cnt = DivisorSigma[1, Range[terms^3]] // Tally // Sort; a[0] = 2; a[n_] := SelectFirst[cnt, #[[2]] == n&][[1]]; Table[a[n], {n, 0, terms - 1}] (* Jean-François Alcover, Jul 18 2017 *)
Extensions
More terms from David W. Wilson
Comments