A201922 Triangle read by rows: T(n,m) = number of unlabeled graphs on n nodes with m connected components, m = 1,2,...,n.
1, 1, 1, 2, 1, 1, 6, 3, 1, 1, 21, 8, 3, 1, 1, 112, 30, 9, 3, 1, 1, 853, 145, 32, 9, 3, 1, 1, 11117, 1028, 154, 33, 9, 3, 1, 1, 261080, 12320, 1065, 156, 33, 9, 3, 1, 1, 11716571, 274806, 12513, 1074, 157, 33, 9, 3, 1, 1, 1006700565, 12007355, 276114, 12550, 1076, 157, 33, 9, 3, 1, 1
Offset: 1
Examples
Triangle starts: 1 1 1 2 1 1 6 3 1 1 21 8 3 1 1 112 30 9 3 1 1 853 145 32 9 3 1 1 ...
Links
- Alois P. Heinz, Rows n = 1..75, flattened
- P. Flajolet, R. Sedgewick, Analytic combinatorics, Theorem I.1 (Multiset)
- R. J. Mathar, Statistics on Small Graphs, arXiv:1709.09000 (2017) Table 82
- Peter Steinbach, Field Guide to Simple Graphs, Volume 4, Part 5 (For Volumes 1, 2, 3, 4 of this book see A000088, A008406, A000055, A000664, respectively.)
Crossrefs
Programs
-
Mathematica
nn=10; c=(A000088=Table[NumberOfGraphs[n], {n,0,nn}]; f[x_] = 1-Product[1/(1-x^k)^a[k], {k,1,nn}]; a[0]=a[1]=a[2]=1; coes=CoefficientList[Series[f[x], {x,0,nn}], x]; sol=First[Solve[Thread[Rest[coes+A000088]==0]]]; Table[a[n], {n,0,nn}]/.sol); f[list_]:=Select[list,#>0&]; g=Product[1/(1-y x^n)^c[[n+1]], {n,1,nn}]; Map[f, Drop[CoefficientList[Series[g, {x,0,nn}], {x,y}],1]] //Flatten (* Geoffrey Critzer, Apr 19 2012 (c in above Mma code is given by Jean Francois Alcover in A001349) *)
Formula
T(n,m) = sum over the partitions of n with m parts: 1*K1 + 2*K2 + ... + n*Kn = n, K1 + K2 + ... + Kn = m, of Product_{i=1..n} binomial(A001349(i) + Ki - 1, Ki).
O.g.f.: Product_{n>=1} 1/(1 - y*x^n)^A001349(n). - Geoffrey Critzer, Apr 19 2012