cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A201922 Triangle read by rows: T(n,m) = number of unlabeled graphs on n nodes with m connected components, m = 1,2,...,n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 6, 3, 1, 1, 21, 8, 3, 1, 1, 112, 30, 9, 3, 1, 1, 853, 145, 32, 9, 3, 1, 1, 11117, 1028, 154, 33, 9, 3, 1, 1, 261080, 12320, 1065, 156, 33, 9, 3, 1, 1, 11716571, 274806, 12513, 1074, 157, 33, 9, 3, 1, 1, 1006700565, 12007355, 276114, 12550, 1076, 157, 33, 9, 3, 1, 1
Offset: 1

Views

Author

Max Alekseyev, Dec 06 2011

Keywords

Examples

			Triangle starts:
    1
    1   1
    2   1   1
    6   3   1   1
   21   8   3   1   1
  112  30   9   3   1   1
  853 145  32   9   3   1   1 ...
		

Crossrefs

Cf. A001349 (first column), A000088 (row sum), A201968 (limits in the diagonals), A106240, A274934 (2nd column).

Programs

  • Mathematica
    nn=10; c=(A000088=Table[NumberOfGraphs[n], {n,0,nn}]; f[x_] = 1-Product[1/(1-x^k)^a[k], {k,1,nn}]; a[0]=a[1]=a[2]=1; coes=CoefficientList[Series[f[x], {x,0,nn}], x]; sol=First[Solve[Thread[Rest[coes+A000088]==0]]]; Table[a[n], {n,0,nn}]/.sol); f[list_]:=Select[list,#>0&]; g=Product[1/(1-y x^n)^c[[n+1]], {n,1,nn}]; Map[f, Drop[CoefficientList[Series[g, {x,0,nn}], {x,y}],1]] //Flatten (* Geoffrey Critzer, Apr 19 2012  (c in above Mma code is given by Jean Francois Alcover in A001349) *)

Formula

T(n,m) = sum over the partitions of n with m parts: 1*K1 + 2*K2 + ... + n*Kn = n, K1 + K2 + ... + Kn = m, of Product_{i=1..n} binomial(A001349(i) + Ki - 1, Ki).
O.g.f.: Product_{n>=1} 1/(1 - y*x^n)^A001349(n). - Geoffrey Critzer, Apr 19 2012