A202019 Triangle by rows, related to the numbers of binary trees of height less than n, derived from the Mandelbrot set.
1, 1, 1, 1, 2, 1, 1, 1, 4, 6, 6, 5, 2, 1, 1, 1, 8, 28, 60, 94, 116, 114, 94, 69, 44, 26, 14, 5, 2, 1, 1, 1, 16, 120, 568, 1932, 5096, 10948, 19788, 30782, 41944, 50788, 55308, 54746, 49700, 41658, 32398, 23461, 15864, 10068, 6036, 3434, 1860, 958, 470, 221, 100, 42, 14, 5, 2, 1, 1
Offset: 1
Examples
Row 4 = (1, 4, 6, 6, 5, 2, 1, 1) since (x^4 + 2x^3 + x^2 + x)^2 + x = x^8 + 4x^7 + 6x^6 + 6x^5 + 5x^4 + 2x^3 + x^2 + x. Triangle begins: 1; 1, 1; 1, 2, 1, 1; 1, 4, 6, 6, 5, 2, 1, 1; 1, 8, 28, 60, 94, 116, 114, 94, 69, 44, 26, 14, 5, 2, 1, 1; ...
References
- Persi Diaconis & R. L. Graham, "Magical Mathematics: The Mathematical Ideas That Animate Great Magic Tricks", Princeton University Press, 2012; pp. 73-83.
Links
- Alois P. Heinz, Rows n = 1..13, flattened
- Juan Carlos Nuño and Francisco J. Muñoz, Entropy-Variance curves of binary sequences generated by random substitutions of constant length, arXiv:2112.15563 [math.PR], 2021.
Programs
-
Maple
b:= proc(n) option remember; `if`(n=0, 1, (g-> (f-> expand( x^n+b(f)*b(n-1-f)))(min(g-1, n-g/2)))(2^ilog2(n))) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(2^(n-1)-1)): seq(T(n), n=1..7); # Alois P. Heinz, Jul 11 2019
-
Mathematica
b[n_] := b[n] = If[n == 0, 1, Function[g, Function[f, Expand[x^n + b[f]* b[n-1-f]]][Min[g-1, n-g/2]]][2^(Length[IntegerDigits[n, 2]]-1)]]; T[n_] := CoefficientList[b[2^(n-1)-1], x]; Array[T, 7] // Flatten (* Jean-François Alcover, Feb 19 2021, after Alois P. Heinz *)
Formula
Coefficients of x by rows such that given n-th row p(x), the next row is (p(x))^2 + x; starting x -> (x^2 + x) -> (x^4 + 2*x^3 + x^2 + x)...
T(n,k) = A309049(2^(n-1)-1,k-1). - Alois P. Heinz, Jul 11 2019
Comments