cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A202020 Number of 4-colored Motzkin paths of length n with no peaks at level 1.

Original entry on oeis.org

1, 4, 16, 68, 305, 1428, 6914, 34368, 174438, 900392, 4712034, 24944268, 133335497, 718664500, 3901458106, 21313500576, 117081025390, 646328535800, 3583680016616, 19949056745160, 111447034042634
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A135334.

Programs

  • Mathematica
    CoefficientList[Series[(2*x^2-4*x+1-Sqrt[12*x^2-8*x+1])/(2*x^4-8*x^3+4*x^2), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 24 2012 *)
  • PARI
    z='z+O('z^50); Vec((2*z^2-4*z+1-sqrt(12*z^2-8*z+1))/(2*z^4-8*z^3+ 4*z^2)) \\ G. C. Greubel, Mar 29 2017

Formula

G.f.: (2*z^2-4*z+1 - sqrt(12*z^2-8*z+1))/(2*z^4-8*z^3+4 z^2).
Conjecture: 2(n+2)*a(n) -4*(5n+4)*a(n-1) +3*(19n-2)*a(n-2) +4*(11-14n)*a(n-4) +12*(n-1)*a(n-4)=0. - R. J. Mathar, Dec 18 2011
a(n) ~ 18*6^(n+3/2)/(49*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 24 2012