A202065 The number of simple labeled graphs on 2n nodes whose connected components are even length cycles.
1, 0, 3, 60, 2835, 219240, 25519725, 4169185020, 910363278825, 256123949281200, 90240816705714675, 38923077574032151500, 20174526711617730727275, 12373285262231460281715000, 8863077725980930704895768125, 7332455066541096999983523547500
Offset: 0
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 0..225
Programs
-
Maple
f:= gfun:-rectoproc({(4*n^3-n)*a(n-1) + (4*n^2+2*n)*a(n) - a(n+1)=0,a(0)=1,a(1)=0},a(n),remember): map(f, [$0..30]); # Robert Israel, Mar 02 2017
-
Mathematica
nn = 30; a = Log[1/(1 - x^2)^(1/4)] - x^2/4; Table[i, {i, 0, nn, 2}]! CoefficientList[Series[Exp[a], {x, 0, nn}], x][[Table[i, {i, 1, nn+1, 2}]]] Table[((2 n)!/n!) HypergeometricPFQ[{1/4, -n}, {}, 4] (-1/4)^n, {n, 0, 15}] (* Benedict W. J. Irwin, May 24 2016 *)
Formula
E.g.f. for aerated sequence: exp(-x^2/4)/(1-x^2)^(1/4).
a(n) ~ (2*n)! * 2^(1/4)*exp(-1/4)*Gamma(3/4)/((2*n)^(3/4)*Pi). - Vaclav Kotesovec, Sep 24 2013
a(n) = ((2n)!/n!)*2F0(1/4,-n;;4)*(-1/4)^n. - Benedict W. J. Irwin, May 24 2016
(4n^3-n)a(n-1) + (4n^2+2n)a(n) - a(n+1) = 0. - Robert Israel, Mar 02 2017
Extensions
a(14) and e.g.f. corrected by Robert Israel, Mar 02 2017