cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A202089 Numbers n such that n^2 and (n+1)^2 have same digit sum.

Original entry on oeis.org

4, 13, 22, 49, 58, 76, 103, 130, 139, 157, 193, 202, 229, 247, 256, 274, 283, 301, 391, 418, 427, 454, 463, 472, 481, 508, 526, 553, 598, 607, 616, 643, 661, 679, 688, 724, 733, 742, 760, 769, 778, 796, 850, 868, 877, 886, 904, 913, 931, 949, 958, 976, 1003
Offset: 1

Views

Author

Zak Seidov, Dec 11 2011

Keywords

Comments

Or numbers n such that A004159(n)=A004159(n+1), or A007953(n^2)=A007953((n+1)^2).
Corresponding digit sums are of the form 7+9k, with k=1, 2, 3,... .
Numbers n are of the form 4+9m, with m=0, 1, 2, 5, 6, 8, 11, ... .
A240752(a(n)) = 0. - Reinhard Zumkeller, Apr 12 2014

Examples

			4^2=16 and 5^2=25 have same digit sum ds=7.
13^2=169 and 14^2=196 have ds=16.
76^2=5776 and 77^2=5929 have ds=25.
526^2=276676 and 527^2=277729 have ds=34.
		

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndices)
    a202089 n = a202089_list !! (n-1)
    a202089_list = elemIndices 0 a240752_list
    -- Reinhard Zumkeller, Apr 12 2014
    
  • Mathematica
    cnt = 0; nn = 10000; n = 4; Reap[While[cnt < nn, While[Total[IntegerDigits[n^2]] != Total[IntegerDigits[(n + 1)^2]], n = n + 9]; cnt++; Sow[n]; n = n + 9]][[2, 1]]
  • Python
    def ok(n): return sum(map(int, str(n*n))) == sum(map(int, str((n+1)**2)))
    print(list(filter(ok, range(1004)))) # Michael S. Branicky, Apr 13 2021