A202089 Numbers n such that n^2 and (n+1)^2 have same digit sum.
4, 13, 22, 49, 58, 76, 103, 130, 139, 157, 193, 202, 229, 247, 256, 274, 283, 301, 391, 418, 427, 454, 463, 472, 481, 508, 526, 553, 598, 607, 616, 643, 661, 679, 688, 724, 733, 742, 760, 769, 778, 796, 850, 868, 877, 886, 904, 913, 931, 949, 958, 976, 1003
Offset: 1
Examples
4^2=16 and 5^2=25 have same digit sum ds=7. 13^2=169 and 14^2=196 have ds=16. 76^2=5776 and 77^2=5929 have ds=25. 526^2=276676 and 527^2=277729 have ds=34.
Links
- Zak Seidov, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
import Data.List (elemIndices) a202089 n = a202089_list !! (n-1) a202089_list = elemIndices 0 a240752_list -- Reinhard Zumkeller, Apr 12 2014
-
Mathematica
cnt = 0; nn = 10000; n = 4; Reap[While[cnt < nn, While[Total[IntegerDigits[n^2]] != Total[IntegerDigits[(n + 1)^2]], n = n + 9]; cnt++; Sow[n]; n = n + 9]][[2, 1]]
-
Python
def ok(n): return sum(map(int, str(n*n))) == sum(map(int, str((n+1)**2))) print(list(filter(ok, range(1004)))) # Michael S. Branicky, Apr 13 2021
Comments