cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A250432 T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with nondecreasing sum of every two consecutive values in every row and column.

Original entry on oeis.org

16, 36, 36, 81, 108, 81, 144, 324, 324, 144, 256, 720, 1296, 720, 256, 400, 1600, 3600, 3600, 1600, 400, 625, 3000, 10000, 12000, 10000, 3000, 625, 900, 5625, 22500, 40000, 40000, 22500, 5625, 900, 1296, 9450, 50625, 105000, 160000, 105000, 50625, 9450
Offset: 1

Views

Author

R. H. Hardin, Nov 22 2014

Keywords

Comments

Table starts
...16....36.....81.....144......256.......400.......625........900........1296
...36...108....324.....720.....1600......3000......5625.......9450.......15876
...81...324...1296....3600....10000.....22500.....50625......99225......194481
..144...720...3600...12000....40000....105000....275625.....617400.....1382976
..256..1600..10000...40000...160000....490000...1500625....3841600.....9834496
..400..3000..22500..105000...490000...1715000...6002500...17287200....49787136
..625..5625..50625..275625..1500625...6002500..24010000...77792400...252047376
..900..9450..99225..617400..3841600..17287200..77792400..280052640..1008189504
.1296.15876.194481.1382976..9834496..49787136.252047376.1008189504..4032758016
.1764.24696.345744.2765952.22127616.124467840.700131600.3080579040.13554547776
Essentially the same as A202100; the mapping between the binary arrays in both sequences is by flipping all entries in one set of arrays. - Joerg Arndt, Dec 01 2014

Examples

			Some solutions for n=5 k=4
..0..0..0..0..1....0..0..0..0..0....0..0..1..0..1....0..0..0..1..1
..0..1..0..1..1....0..0..0..1..0....1..1..1..1..1....0..0..1..1..1
..0..0..1..0..1....0..0..0..1..0....0..0..1..1..1....0..0..1..1..1
..0..1..1..1..1....0..0..0..1..0....1..1..1..1..1....0..0..1..1..1
..0..1..1..1..1....0..0..0..1..0....0..1..1..1..1....1..0..1..1..1
..0..1..1..1..1....0..0..0..1..1....1..1..1..1..1....1..1..1..1..1
		

Crossrefs

Column 1 is A030179(n+3), A202093 - A202099 (further columns).

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1) +2*a(n-2) -6*a(n-3) +6*a(n-5) -2*a(n-6) -2*a(n-7) +a(n-8); also a polynomial of degree 4 plus a quasipolynomial of degree 2 with period 2
k=2: [order 12; also a polynomial of degree 6 plus a quasipolynomial of degree 4 with period 2]
k=3: [order 16; also a polynomial of degree 8 plus a quasipolynomial of degree 6 with period 2]
k=4: [order 20; also a polynomial of degree 10 plus a quasipolynomial of degree 8 with period 2]
k=5: [order 24; also a polynomial of degree 12 plus a quasipolynomial of degree 10 with period 2]
k=6: [order 28; also a polynomial of degree 14 plus a quasipolynomial of degree 12 with period 2]
k=7: [order 32; also a polynomial of degree 16 plus a quasipolynomial of degree 14 with period 2]

A202093 Number of (n+2) X 3 binary arrays avoiding patterns 001 and 011 in rows and columns.

Original entry on oeis.org

108, 324, 720, 1600, 3000, 5625, 9450, 15876, 24696, 38416, 56448, 82944, 116640, 164025, 222750, 302500, 399300, 527076, 679536, 876096, 1107288, 1399489, 1739010, 2160900, 2646000, 3240000, 3916800, 4734976, 5659776, 6765201, 8005878
Offset: 1

Views

Author

R. H. Hardin, Dec 11 2011

Keywords

Comments

Column 1 of A202100.

Examples

			Some solutions for n=10:
..1..1..1....1..1..0....1..1..1....1..1..1....1..1..1....1..0..0....1..0..0
..1..1..0....1..1..0....1..1..1....1..1..0....0..0..0....1..1..0....1..1..1
..0..1..0....1..0..0....1..1..1....1..0..0....1..0..1....1..0..0....1..0..0
..1..1..0....1..1..0....1..1..1....1..1..0....0..0..0....1..1..0....1..1..1
..0..0..0....1..0..0....1..0..1....0..0..0....1..0..1....1..0..0....1..0..0
..1..1..0....1..1..0....1..1..1....1..1..0....0..0..0....0..1..0....1..1..1
..0..0..0....1..0..0....1..0..1....0..0..0....1..0..0....1..0..0....1..0..0
..0..1..0....1..1..0....1..0..1....1..1..0....0..0..0....0..1..0....1..1..1
..0..0..0....1..0..0....0..0..0....0..0..0....0..0..0....1..0..0....1..0..0
..0..1..0....1..0..0....0..0..0....0..0..0....0..0..0....0..1..0....1..1..1
..0..0..0....1..0..0....0..0..0....0..0..0....0..0..0....1..0..0....1..0..0
..0..0..0....1..0..0....0..0..0....0..0..0....0..0..0....0..1..0....0..1..0
		

Formula

Empirical: a(n) = 2*a(n-1) +4*a(n-2) -10*a(n-3) -5*a(n-4) +20*a(n-5) -20*a(n-7) +5*a(n-8) +10*a(n-9) -4*a(n-10) -2*a(n-11) +a(n-12).
Conjectures from Colin Barker, Feb 20 2018: (Start)
G.f.: x*(108 + 108*x - 360*x^2 - 56*x^3 + 700*x^4 - 115*x^5 - 680*x^6 + 236*x^7 + 334*x^8 - 155*x^9 - 66*x^10 + 36*x^11) / ((1 - x)^7*(1 + x)^5).
a(n) = (n^6 + 28*n^5 + 324*n^4 + 1984*n^3 + 6784*n^2 + 12288*n + 9216) / 256 for n even.
a(n) = (n^6 + 28*n^5 + 321*n^4 + 1928*n^3 + 6395*n^2 + 11100*n + 7875) / 256 for n odd.
(End)

A202094 Number of (n+2) X 4 binary arrays avoiding patterns 001 and 011 in rows and columns.

Original entry on oeis.org

324, 1296, 3600, 10000, 22500, 50625, 99225, 194481, 345744, 614656, 1016064, 1679616, 2624400, 4100625, 6125625, 9150625, 13176900, 18974736, 26501904, 37015056, 50381604, 68574961, 91298025, 121550625, 158760000, 207360000
Offset: 1

Views

Author

R. H. Hardin, Dec 11 2011

Keywords

Comments

Column 2 of A202100.

Examples

			Some solutions for n=7
..1..1..1..1....1..1..1..1....1..1..0..1....1..1..0..1....1..1..1..1
..1..1..1..1....1..1..0..1....1..1..1..0....1..1..0..1....1..1..1..0
..0..1..0..1....1..1..1..1....1..1..0..0....0..1..0..0....0..1..0..1
..1..1..1..0....0..1..0..1....1..1..1..0....1..1..0..0....1..1..0..0
..0..1..0..0....1..1..0..1....1..1..0..0....0..0..0..0....0..1..0..0
..0..0..0..0....0..1..0..1....1..1..0..0....1..1..0..0....1..1..0..0
..0..1..0..0....1..1..0..0....1..1..0..0....0..0..0..0....0..1..0..0
..0..0..0..0....0..0..0..0....0..1..0..0....0..1..0..0....0..1..0..0
..0..1..0..0....0..1..0..0....0..1..0..0....0..0..0..0....0..0..0..0
		

Crossrefs

Cf. A202100.

Formula

Empirical: a(n) = 2*a(n-1) +6*a(n-2) -14*a(n-3) -14*a(n-4) +42*a(n-5) +14*a(n-6) -70*a(n-7) +70*a(n-9) -14*a(n-10) -42*a(n-11) +14*a(n-12) +14*a(n-13) -6*a(n-14) -2*a(n-15) +a(n-16).

A202095 Number of (n+2)X5 binary arrays avoiding patterns 001 and 011 in rows and columns.

Original entry on oeis.org

720, 3600, 12000, 40000, 105000, 275625, 617400, 1382976, 2765952, 5531904, 10160640, 18662400, 32076000, 55130625, 89842500, 146410000, 228399600, 356303376, 535927392, 806105664, 1175570760, 1714374025, 2434614000
Offset: 1

Views

Author

R. H. Hardin Dec 11 2011

Keywords

Comments

Column 3 of A202100

Examples

			Some solutions for n=4
..1..1..1..0..0....1..1..0..1..0....1..1..1..1..0....1..1..0..0..0
..1..1..1..0..1....1..1..1..0..1....1..1..1..0..0....1..1..0..1..0
..1..1..1..0..0....0..1..0..1..0....1..1..1..1..0....0..1..0..0..0
..0..0..0..0..0....1..1..1..0..1....1..1..0..0..0....0..1..0..0..0
..0..1..0..0..0....0..1..0..1..0....1..1..0..0..0....0..0..0..0..0
..0..0..0..0..0....1..0..1..0..1....1..0..0..0..0....0..1..0..0..0
		

Formula

Empirical: a(n) = 2*a(n-1) +8*a(n-2) -18*a(n-3) -27*a(n-4) +72*a(n-5) +48*a(n-6) -168*a(n-7) -42*a(n-8) +252*a(n-9) -252*a(n-11) +42*a(n-12) +168*a(n-13) -48*a(n-14) -72*a(n-15) +27*a(n-16) +18*a(n-17) -8*a(n-18) -2*a(n-19) +a(n-20)

A202096 Number of (n+2)X6 binary arrays avoiding patterns 001 and 011 in rows and columns.

Original entry on oeis.org

1600, 10000, 40000, 160000, 490000, 1500625, 3841600, 9834496, 22127616, 49787136, 101606400, 207360000, 392040000, 741200625, 1317690000, 2342560000, 3958926400, 6690585616, 10837642816, 17555190016, 27429984400, 42859350625
Offset: 1

Views

Author

R. H. Hardin Dec 11 2011

Keywords

Comments

Column 4 of A202100

Examples

			Some solutions for n=3
..1..1..1..1..0..1....1..1..1..1..1..1....1..1..1..1..0..0....1..0..1..0..0..0
..1..1..0..1..0..1....1..1..0..1..0..0....1..0..1..0..0..0....1..1..0..1..0..1
..1..1..1..1..0..1....0..1..0..1..0..1....1..1..0..0..0..0....1..0..1..0..0..0
..1..1..0..1..0..1....0..0..0..0..0..0....1..0..0..0..0..0....1..0..0..0..0..0
..1..1..0..0..0..0....0..1..0..1..0..1....0..1..0..0..0..0....0..0..0..0..0..0
		

Formula

Empirical: a(n) = 2*a(n-1) +10*a(n-2) -22*a(n-3) -44*a(n-4) +110*a(n-5) +110*a(n-6) -330*a(n-7) -165*a(n-8) +660*a(n-9) +132*a(n-10) -924*a(n-11) +924*a(n-13) -132*a(n-14) -660*a(n-15) +165*a(n-16) +330*a(n-17) -110*a(n-18) -110*a(n-19) +44*a(n-20) +22*a(n-21) -10*a(n-22) -2*a(n-23) +a(n-24)

A202097 Number of (n+2)X7 binary arrays avoiding patterns 001 and 011 in rows and columns.

Original entry on oeis.org

3000, 22500, 105000, 490000, 1715000, 6002500, 17287200, 49787136, 124467840, 311169600, 698544000, 1568160000, 3234330000, 6670805625, 12847477500, 24743290000, 45032787800, 81959673796, 142244061960, 246869859600
Offset: 1

Views

Author

R. H. Hardin Dec 11 2011

Keywords

Comments

Column 5 of A202100

Examples

			Some solutions for n=2
..1..1..1..1..0..0..0....1..1..1..1..0..0..0....1..1..1..1..1..1..1
..1..1..0..1..0..1..0....1..1..1..1..1..0..0....1..1..0..1..0..1..0
..0..1..0..1..0..0..0....1..1..1..1..0..0..0....1..0..1..0..1..0..1
..1..0..0..0..0..0..0....1..1..0..0..0..0..0....1..1..0..1..0..0..0
		

Formula

Empirical: a(n) = 2*a(n-1) +12*a(n-2) -26*a(n-3) -65*a(n-4) +156*a(n-5) +208*a(n-6) -572*a(n-7) -429*a(n-8) +1430*a(n-9) +572*a(n-10) -2574*a(n-11) -429*a(n-12) +3432*a(n-13) -3432*a(n-15) +429*a(n-16) +2574*a(n-17) -572*a(n-18) -1430*a(n-19) +429*a(n-20) +572*a(n-21) -208*a(n-22) -156*a(n-23) +65*a(n-24) +26*a(n-25) -12*a(n-26) -2*a(n-27) +a(n-28)

A202098 Number of (n+2)X8 binary arrays avoiding patterns 001 and 011 in rows and columns.

Original entry on oeis.org

5625, 50625, 275625, 1500625, 6002500, 24010000, 77792400, 252047376, 700131600, 1944810000, 4802490000, 11859210000, 26683222500, 60037250625, 125262905625, 261351000625, 512247961225, 1004006004001, 1866953313225, 3471607400625
Offset: 1

Views

Author

R. H. Hardin Dec 11 2011

Keywords

Comments

Column 6 of A202100

Examples

			Some solutions for n=2
..1..1..1..0..1..0..1..0....1..1..1..1..1..1..0..1....1..1..1..1..1..1..0..1
..1..1..1..0..1..0..0..0....1..1..1..1..1..0..0..0....1..1..1..1..1..1..0..1
..1..1..1..0..1..0..1..0....1..1..1..1..0..1..0..0....0..1..0..0..0..0..0..0
..0..1..0..0..0..0..0..0....1..1..1..0..0..0..0..0....1..1..1..0..0..0..0..0
		

Formula

Empirical: a(n) = 2*a(n-1) +14*a(n-2) -30*a(n-3) -90*a(n-4) +210*a(n-5) +350*a(n-6) -910*a(n-7) -910*a(n-8) +2730*a(n-9) +1638*a(n-10) -6006*a(n-11) -2002*a(n-12) +10010*a(n-13) +1430*a(n-14) -12870*a(n-15) +12870*a(n-17) -1430*a(n-18) -10010*a(n-19) +2002*a(n-20) +6006*a(n-21) -1638*a(n-22) -2730*a(n-23) +910*a(n-24) +910*a(n-25) -350*a(n-26) -210*a(n-27) +90*a(n-28) +30*a(n-29) -14*a(n-30) -2*a(n-31) +a(n-32)

A202099 Number of (n+2)X9 binary arrays avoiding patterns 001 and 011 in rows and columns.

Original entry on oeis.org

9450, 99225, 617400, 3841600, 17287200, 77792400, 280052640, 1008189504, 3080579040, 9412880400, 25357147200, 68309049600, 166503308400, 405851814225, 911913952950, 2048991844900, 4302882874290, 9036054036009, 17922751806960
Offset: 1

Views

Author

R. H. Hardin Dec 11 2011

Keywords

Comments

Column 7 of A202100

Examples

			Some solutions for n=2
..1..1..1..1..1..1..1..1..1....1..1..1..1..1..1..1..1..0
..1..1..1..1..1..1..1..0..0....1..1..1..1..1..0..1..0..1
..1..1..1..1..1..0..1..0..1....0..1..0..0..0..0..0..0..0
..1..1..1..1..0..0..0..0..0....0..1..0..1..0..0..0..0..0
		

Formula

Empirical: a(n) = 2*a(n-1) +16*a(n-2) -34*a(n-3) -119*a(n-4) +272*a(n-5) +544*a(n-6) -1360*a(n-7) -1700*a(n-8) +4760*a(n-9) +3808*a(n-10) -12376*a(n-11) -6188*a(n-12) +24752*a(n-13) +7072*a(n-14) -38896*a(n-15) -4862*a(n-16) +48620*a(n-17) -48620*a(n-19) +4862*a(n-20) +38896*a(n-21) -7072*a(n-22) -24752*a(n-23) +6188*a(n-24) +12376*a(n-25) -3808*a(n-26) -4760*a(n-27) +1700*a(n-28) +1360*a(n-29) -544*a(n-30) -272*a(n-31) +119*a(n-32) +34*a(n-33) -16*a(n-34) -2*a(n-35) +a(n-36)

A202092 Number of (n+2) X (n+2) binary arrays avoiding patterns 001 and 011 in rows and columns.

Original entry on oeis.org

108, 1296, 12000, 160000, 1715000, 24010000, 280052640, 4032758016, 49700008512, 728933458176, 9337998878208, 138735983333376, 1829038842774000, 27435582641610000, 369797030228340000, 5588044012339360000
Offset: 1

Views

Author

R. H. Hardin Dec 11 2011

Keywords

Comments

Diagonal of A202100.

Examples

			Some solutions for n=3
..1..1..1..1..1....1..1..1..0..1....1..1..0..0..0....1..1..1..1..1
..0..1..0..1..0....1..1..1..1..0....1..1..1..0..1....1..1..1..0..0
..1..0..0..0..0....1..1..1..0..1....0..1..0..0..0....0..0..0..0..0
..0..1..0..0..0....1..0..0..0..0....1..0..1..0..0....1..1..1..0..0
..1..0..0..0..0....1..0..1..0..1....0..1..0..0..0....0..0..0..0..0
		

Crossrefs

Cf. A202100.
Showing 1-9 of 9 results.