cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A202107 a(n) = n^4*(n+1)^4/8.

Original entry on oeis.org

2, 162, 2592, 20000, 101250, 388962, 1229312, 3359232, 8201250, 18301250, 37949472, 74030112, 137149922, 243101250, 414720000, 684204032, 1095962562, 1710072162, 2606420000, 3889620000, 5694792642, 8194304162, 11605565952, 16200000000, 22313281250, 30356972802
Offset: 1

Views

Author

Martin Renner, Dec 11 2011

Keywords

Comments

A relation between fourth powers and the sum of fifth and seventh powers. See the first formula, which is from Beiler.

References

  • Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966, p. 161.

Crossrefs

Programs

Formula

a(n) = 2*(Sum_{k=1..n} k)^4 = Sum_{k=1..n} (k^5 + k^7).
a(n) = 2*A059977(n-1).
a(n) = A000539(n) + A000541(n).
G.f.: -2*x*(1+72*x+603*x^2+1168*x^3+603*x^4+72*x^5+x^6) / (x-1)^9. - R. J. Mathar, Dec 13 2011
a(n) = 2*(A000217(n)^4). - Zak Seidov, Jan 21 2012
From Amiram Eldar, Apr 09 2024: (Start)
Sum_{n>=1} 1/a(n) = 8*Pi^4/45 + 80*Pi^2/3 - 280.
Sum_{n>=1} (-1)^(n+1)/a(n) = 280 - 320*log(2) - 48*zeta(3). (End)