cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A202155 x-values in the solution to x^2 - 13*y^2 = -1.

Original entry on oeis.org

18, 23382, 30349818, 39394040382, 51133434066018, 66371158023650982, 86149711981264908618, 111822259780523827735182, 145145207045407947135357618, 188398366922679734857866452982, 244540935120431250437563520613018, 317413945387952840388222591889244382
Offset: 1

Views

Author

Bruno Berselli, Dec 15 2011

Keywords

Comments

The corresponding values of y of this Pell equation are in A202156.

References

  • A. H. Beiler, Recreations in the Theory of Numbers: The Queen of Mathematics Entertains, Dover (New York), 1966, p. 264.

Crossrefs

Programs

  • Magma
    m:=13; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(18*x*(1+x)/(1-1298*x+x^2)));
    
  • Mathematica
    LinearRecurrence[{1298, -1}, {18, 23382}, 12]
  • Maxima
    makelist(expand(((18+5*sqrt(13))^(2*n-1)+(18-5*sqrt(13))^(2*n-1))/2), n, 1, 12);

Formula

G.f.: 18*x*(1+x)/(1-1298*x+x^2).
a(n) = -a(-n+1) = (r^(2n-1)-1/r^(2n-1))/2, where r=18+5*sqrt(13).