A202155 x-values in the solution to x^2 - 13*y^2 = -1.
18, 23382, 30349818, 39394040382, 51133434066018, 66371158023650982, 86149711981264908618, 111822259780523827735182, 145145207045407947135357618, 188398366922679734857866452982, 244540935120431250437563520613018, 317413945387952840388222591889244382
Offset: 1
References
- A. H. Beiler, Recreations in the Theory of Numbers: The Queen of Mathematics Entertains, Dover (New York), 1966, p. 264.
Links
- Bruno Berselli, Table of n, a(n) for n = 1..200
- Tanya Khovanova, Recursive Sequences.
- A. M. S. Ramasamy, Polynomial solutions for the Pell's equation, Indian Journal of Pure and Applied Mathematics 25 (1994), p. 579 (Theorem 4, case t=1).
- J. P. Robertson, Solving the generalized Pell equation x^2-D*y^2=N, pp. 9, 24.
- Index entries for linear recurrences with constant coefficients, signature (1298,-1).
Programs
-
Magma
m:=13; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!(18*x*(1+x)/(1-1298*x+x^2))); -
Mathematica
LinearRecurrence[{1298, -1}, {18, 23382}, 12]
-
Maxima
makelist(expand(((18+5*sqrt(13))^(2*n-1)+(18-5*sqrt(13))^(2*n-1))/2), n, 1, 12);
Formula
G.f.: 18*x*(1+x)/(1-1298*x+x^2).
a(n) = -a(-n+1) = (r^(2n-1)-1/r^(2n-1))/2, where r=18+5*sqrt(13).
Comments