cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A114047 x such that x^2 - 13*y^2 = 1.

Original entry on oeis.org

1, 649, 842401, 1093435849, 1419278889601, 1842222905266249, 2391203911756701601, 3103780835237293411849, 4028705132934095091878401, 5229256158767620191964752649, 6787570465375238075075157060001, 8810261234800900253827361899128649
Offset: 0

Views

Author

Cino Hilliard, Feb 01 2006

Keywords

Comments

A Pellian equation (Pell's equation). - Benoit Cloitre, Feb 03 2006
Numbers n such that 13*(n^2-1) is a square. - Vincenzo Librandi, Nov 13 2010
The corresponding values y of the solutions of this Pell equation are given in A075871(n). - Wolfdieter Lang, Jun 27 2013

Examples

			(649^2-1)/13 = 180^2.
		

Crossrefs

Programs

  • Magma
    I:=[1,649]; [n le 2 select I[n] else 1298*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Jun 14 2015
  • Mathematica
    LinearRecurrence[{1298,-1},{1,649},20] (* or *) With[{c=180Sqrt[13]}, Simplify[Table[1/2((649-c)^n+(649+c)^n),{n,0,20}]]] (* Harvey P. Dale, Aug 11 2011 *)
  • PARI
    /* This sequence is computed with g(1e9,13) in the following program. */
    g(n,k) = for(y=0,n,x=k*y^2+1;if(issquare(x),print1(floor(sqrt(x))",")))
    
  • PARI
    a0=1;a1=649;for(n=2,30,a2=1298*a1-a0;a0=a1;a1=a2;print1(a2,",")) \\ Benoit Cloitre
    
  • PARI
    Vec((1-649*x)/(1-1298*x+x^2) + O(x^100)) \\ Colin Barker, Jun 13 2015
    

Formula

a(0)=1, a(1)=649 then a(n)=1298*a(n-1)-a(n-2). - Benoit Cloitre, Feb 03 2006
G.f.: (1-649*x)/(1-1298*x+x^2). - Philippe Deléham, Nov 18 2008
a(n) = 2*A132644(n) + 1. - Hugo Pfoertner, Feb 11 2024

Extensions

More terms from Benoit Cloitre, Feb 03 2006

A202156 y-values in the solution to x^2 - 13*y^2 = -1.

Original entry on oeis.org

5, 6485, 8417525, 10925940965, 14181862955045, 18408047189707445, 23893631070377308565, 31013914721302556809925, 40256037414619648361974085, 52252305550261582271285552405, 67823452348202119168480285047605, 88034788895660800419105138706238885
Offset: 1

Views

Author

Bruno Berselli, Dec 15 2011

Keywords

Comments

The corresponding values of x of this Pell equation are in A202155.

References

  • A. H. Beiler, Recreations in the Theory of Numbers: The Queen of Mathematics Entertains, Dover Publications (New York), 1966, p. 264.

Crossrefs

Programs

  • Magma
    m:=13; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(5*x*(1-x)/(1-1298*x+x^2)));
    
  • Mathematica
    LinearRecurrence[{1298, -1}, {5, 6485}, 12]
  • Maxima
    makelist(expand(((18+5*sqrt(13))^(2*n-1)-(18-5*sqrt(13))^(2*n-1))/(2*sqrt(13))), n, 1, 12);

Formula

G.f.: 5*x*(1-x)/(1-1298*x+x^2).
a(n) = a(-n+1) = 5*(r^(2n-1)+1/r^(2n-1))/(r+1/r), where r=18+5*sqrt(13).
a(n) = A006191(6*n - 3). - Michael Somos, Feb 24 2023
Showing 1-2 of 2 results.