A202191 Triangle T(n,m) = coefficient of x^n in expansion of [x/(1-x-x^3)]^m = sum(n>=m, T(n,m) x^n).
1, 1, 1, 1, 2, 1, 2, 3, 3, 1, 3, 6, 6, 4, 1, 4, 11, 13, 10, 5, 1, 6, 18, 27, 24, 15, 6, 1, 9, 30, 51, 55, 40, 21, 7, 1, 13, 50, 94, 116, 100, 62, 28, 8, 1, 19, 81, 171, 234, 231, 168, 91, 36, 9, 1, 28, 130, 303, 460, 505, 420, 266, 128, 45, 10, 1, 41, 208
Offset: 1
Examples
Triangle T(n, m) starts: [1] 1; [2] 1, 1; [3] 1, 2, 1; [4] 2, 3, 3, 1; [5] 3, 6, 6, 4, 1; [6] 4, 11, 13, 10, 5, 1; [7] 6, 18, 27, 24, 15, 6, 1; [8] 9, 30, 51, 55, 40, 21, 7, 1; [9] 13, 50, 94, 116, 100, 62, 28, 8, 1; . From _R. J. Mathar_, Mar 15 2013: (Start) The matrix inverse starts 1; -1,1; 1,-2,1; -2,3,-3,1; 5,-6,6,-4,1; -11,15,-13,10,-5,1; 24,-36,33,-24,15,-6,1; -57,84,-84,63,-40,21,-7,1; 141,-204,208,-168,110,-62,28,-8,1. (End)
Crossrefs
Cf. A000930.
Programs
-
Maple
A202191 := proc(n,k) (x/(1-x-x^3))^k ; coeftayl(%,x=0,n) ; end proc: # R. J. Mathar, Mar 15 2013 # Uses function PMatrix from A357368. Adds column 1, 0, 0, ... to the left. PMatrix(10, n -> simplify(hypergeom([(2 - n)/3, (3 - n)/3, (1 - n)/3], [(2 - n)/2, (1 - n)/2], -27/4))); # Peter Luschny, Oct 09 2022
-
Maxima
T(n,m):=sum(binomial(k,(n-m-k)/2)*binomial(m+k-1,m-1)*((-1)^(n-m-k)+1),k,0,n-m)/2;
Formula
T(n,m)=sum(k=0..n-m, binomial(k,(n-m-k)/2)*binomial(m+k-1,m-1)*((-1)^(n-m-k)+1))/2.
Comments