A202267 Numbers in which all digits are noncomposites (1, 2, 3, 5, 7) or 0.
0, 1, 2, 3, 5, 7, 10, 11, 12, 13, 15, 17, 20, 21, 22, 23, 25, 27, 30, 31, 32, 33, 35, 37, 50, 51, 52, 53, 55, 57, 70, 71, 72, 73, 75, 77, 100, 101, 102, 103, 105, 107, 110, 111, 112, 113, 115, 117, 120, 121, 122, 123, 125, 127, 130, 131, 132, 133, 135, 137, 150
Offset: 1
Examples
a(1000) = 5353. a(10^4) = 115153 a(10^5) = 2070753. a(10^6) = 33233353.
Links
- Hieronymus Fischer, Table of n, a(n) for n = 1..10000
- Robert Baillie and Thomas Schmelzer, Summing Kempner's Curious (Slowly-Convergent) Series, Mathematica Notebook kempnerSums.nb, Wolfram Library Archive, 2008.
- Index entries for 10-automatic sequences.
Crossrefs
Programs
-
Mathematica
Union[Flatten[FromDigits/@Tuples[{0,1,2,3,5,7},3]]] (* Harvey P. Dale, Mar 11 2015 *)
Formula
From Hieronymus Fischer, May 30 2012: (Start)
a(n) = (b_m(n)+1) mod 10 + floor((b_m(n)+2)/5) + floor((b_m(n)+1)/5) - 2*floor(b_m(n)/5))*10^m + sum_{j=0..m-1} (b_j(n) mod 6 + floor((b_j(n)+1)/6) + floor((b_j(n)+2)/6) - 2*floor(b_j(n)/6)))*10^j, where n>1, b_j(n)) = floor((n-1-6^m)/6^j), m = floor(log_6(n-1)).
a(1*6^n+1) = 1*10^n.
a(2*6^n+1) = 2*10^n.
a(3*6^n+1) = 3*10^n.
a(4*6^n+1) = 5*10^n.
a(5*6^n+1) = 7*10^n.
a(n) = 10^log_6(n-1) for n=6^k+1, k>0,
a(n) < 10^log_6(n-1) else.
a(n) <= A084984(n), equality holds if the representation of n-1 as a base-6 number only has digits 0 or 1.
G.f.: g(x) = (x/(1-x))*sum_{j>=0} 10^j*x^6^j *(1-x^6^j)* (1 + 2x^6^j + 3(x^2)^6^j + 5(x^3)^6^j + 7(x^4)^6^j)/(1-x^6^(j+1)).
Also: g(x) = (x/(1-x))*(h_(6,1)(x) + h_(6,2)(x) + h_(6,3)(x) + 2*h_(6,4)(x) + 2*h_(6,5)(x) - 7*h_(6,6)(x)), where h_(6,k)(x) = sum_{j>=0} 10^j*x^(k*6^j)/(1-x^6^(j+1)). (End)
Sum_{n>=2} 1/a(n) = 4.945325883472729555972742252181522711968119529132581193614012706741310832798... (calculated using Baillie and Schmelzer's kempnerSums.nb, see Links). - Amiram Eldar, Feb 15 2024
Extensions
Examples added by Hieronymus Fischer, May 30 2012
Comments