cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A202267 Numbers in which all digits are noncomposites (1, 2, 3, 5, 7) or 0.

Original entry on oeis.org

0, 1, 2, 3, 5, 7, 10, 11, 12, 13, 15, 17, 20, 21, 22, 23, 25, 27, 30, 31, 32, 33, 35, 37, 50, 51, 52, 53, 55, 57, 70, 71, 72, 73, 75, 77, 100, 101, 102, 103, 105, 107, 110, 111, 112, 113, 115, 117, 120, 121, 122, 123, 125, 127, 130, 131, 132, 133, 135, 137, 150
Offset: 1

Views

Author

Jaroslav Krizek, Dec 25 2011

Keywords

Comments

If n-1 is represented as a base-6 number (see A007092) according to n-1=d(m)d(m-1)...d(3)d(2)d(1)d(0) then a(n)= sum_{j=0..m} c(d(j))*10^j, where c(k)=0,1,2,3,5,7 for k=0..5. - Hieronymus Fischer, May 30 2012

Examples

			a(1000) = 5353.
a(10^4) = 115153
a(10^5) = 2070753.
a(10^6) = 33233353.
		

Crossrefs

Supersequence of A001742 and A046034.
Cf. A046034 (numbers in which all digits are primes), A001742 (numbers in which all digits are noncomposites excluding 0), A202268 (numbers in which all digits are nonprimes excluding 0), A084984 (numbers in which all digits are nonprimes), A029581 (numbers in which all digits are composites).

Programs

  • Mathematica
    Union[Flatten[FromDigits/@Tuples[{0,1,2,3,5,7},3]]] (* Harvey P. Dale, Mar 11 2015 *)

Formula

From Hieronymus Fischer, May 30 2012: (Start)
a(n) = (b_m(n)+1) mod 10 + floor((b_m(n)+2)/5) + floor((b_m(n)+1)/5) - 2*floor(b_m(n)/5))*10^m + sum_{j=0..m-1} (b_j(n) mod 6 + floor((b_j(n)+1)/6) + floor((b_j(n)+2)/6) - 2*floor(b_j(n)/6)))*10^j, where n>1, b_j(n)) = floor((n-1-6^m)/6^j), m = floor(log_6(n-1)).
a(1*6^n+1) = 1*10^n.
a(2*6^n+1) = 2*10^n.
a(3*6^n+1) = 3*10^n.
a(4*6^n+1) = 5*10^n.
a(5*6^n+1) = 7*10^n.
a(n) = 10^log_6(n-1) for n=6^k+1, k>0,
a(n) < 10^log_6(n-1) else.
a(n) = A007092(n-1) iff the digits of A007092(n-1) are <= 3, a(n)>A007092(n-1), else.
a(n) <= A084984(n), equality holds if the representation of n-1 as a base-6 number only has digits 0 or 1.
G.f.: g(x) = (x/(1-x))*sum_{j>=0} 10^j*x^6^j *(1-x^6^j)* (1 + 2x^6^j + 3(x^2)^6^j + 5(x^3)^6^j + 7(x^4)^6^j)/(1-x^6^(j+1)).
Also: g(x) = (x/(1-x))*(h_(6,1)(x) + h_(6,2)(x) + h_(6,3)(x) + 2*h_(6,4)(x) + 2*h_(6,5)(x) - 7*h_(6,6)(x)), where h_(6,k)(x) = sum_{j>=0} 10^j*x^(k*6^j)/(1-x^6^(j+1)). (End)
Sum_{n>=2} 1/a(n) = 4.945325883472729555972742252181522711968119529132581193614012706741310832798... (calculated using Baillie and Schmelzer's kempnerSums.nb, see Links). - Amiram Eldar, Feb 15 2024

Extensions

Examples added by Hieronymus Fischer, May 30 2012