A202282 Initial prime in prime decuplets (p+0,2,6,8,12,18,20,26,30,32) preceding the maximal gaps in A202281.
11, 33081664151, 83122625471, 294920291201, 730121110331, 1291458592421, 4700094892301, 6218504101541, 7908189600581, 10527733922591, 21939572224301, 23960929422161, 30491978649941, 46950720918371, 84254447788781, 118565337622001, 124788318636251, 235474768767851
Offset: 1
Keywords
Examples
The first four gaps (after the decuplets starting at p=11, 33081664151, 83122625471, 294920291201) form an increasing sequence, with the size of each gap setting a new record. Therefore these values of p are in the sequence, as a(1), a(2), a(3), a(4). The next gap is not a record, so the respective initial prime is not in the sequence.
Links
- Norman Luhn, Table of n, a(n) for n = 1..50 (terms 1..33 from Dana Jacobsen).
- Tony Forbes and Norman Luhn, Prime k-tuplets
- G. H. Hardy and J. E. Littlewood, Some Problems of 'Partitio Numerorum.' III. On the Expression of a Number as a Sum of Primes, Acta Math. 44, 1-70, 1923.
- Alexei Kourbatov, Maximal gaps between prime k-tuples
- Eric Weisstein's World of Mathematics, k-Tuple Conjecture
Programs
-
Perl
use ntheory ":all"; my($i,$l,$max)=(-1,0,0); for (sieve_prime_cluster(1,1e13,2,6,8,12,18,20,26,30,32)) { my $gap=$-$l; if ($gap>$max) { say "$i $l" if ++$i > 0; $max=$gap; } $l=$; } # Dana Jacobsen, Oct 09 2015
Comments