A202298 If A is the n X n matrix containing the first n^2 primes, a(n) is the sum of the elements of the square of A.
4, 155, 3702, 39933, 244676, 1046455, 3635046, 10406049, 26595892, 60712839, 128248632, 253217949, 472633812, 837636667, 1431878468, 2356057659, 3756191658, 5844567389, 8865989698, 13147819241, 19100995732, 27324708263, 38402817766, 53116446341, 72537301810, 97894517685
Offset: 1
Keywords
Examples
M2 = [2,3; 5,7], M2*M2 = [19,27; 45,64], so a(2) = 19 + 27 + 45 + 64 = 155.
Links
- Robert Israel, Table of n, a(n) for n = 1..1000
Programs
-
Maple
A202298 := proc(n) local A,A2,r,c ; A := Matrix(n, n) ; for r from 0 to n-1 do for c from 0 to n-1 do A[r+1,c+1] := ithprime(1+r*n+c) ; end do: end do: A2 := A^2 ; add(add(A2[r,c],r=1..n),c=1..n) ; end proc: # R. J. Mathar, Feb 09 2017 # alternative N:= 50: # for a(1)..a(N) P:= [seq(ithprime(i),i=1..N^2)]: f:= proc(n) local M,e,u; M:= Matrix(n,n,P[1..n^2]); e:= Vector(n,1); e^%T . (M . (M . e)); end proc: map(f, [$1..N]); # Robert Israel, Jan 11 2024
-
PARI
a(n) = my(m = matrix(n,n, i, j, prime((i-1)*n+j))); my(mm = m^2); sum(k=1, n, vecsum(mm[k,])); \\ Michel Marcus, Jan 28 2017
Formula
a(n) = Sum_{j=1..n} (Sum_{i=1..n} prime(i+n*(j-1)) * Sum_{i=1..n} prime(j+n*(i-1))). - Robert Israel, Jan 11 2024
Extensions
More terms from Michel Marcus, Jan 28 2017