cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A202298 If A is the n X n matrix containing the first n^2 primes, a(n) is the sum of the elements of the square of A.

Original entry on oeis.org

4, 155, 3702, 39933, 244676, 1046455, 3635046, 10406049, 26595892, 60712839, 128248632, 253217949, 472633812, 837636667, 1431878468, 2356057659, 3756191658, 5844567389, 8865989698, 13147819241, 19100995732, 27324708263, 38402817766, 53116446341, 72537301810, 97894517685
Offset: 1

Views

Author

Stephen Balaban, Dec 15 2011

Keywords

Examples

			M2 = [2,3; 5,7], M2*M2 = [19,27; 45,64], so a(2) = 19 + 27 + 45 + 64 = 155.
		

Crossrefs

Programs

  • Maple
    A202298 := proc(n)
        local A,A2,r,c ;
        A := Matrix(n, n) ;
        for r from 0 to n-1 do
        for c from 0 to n-1 do
            A[r+1,c+1] := ithprime(1+r*n+c) ;
        end do:
        end do:
        A2 := A^2 ;
        add(add(A2[r,c],r=1..n),c=1..n) ;
    end proc: # R. J. Mathar, Feb 09 2017
    # alternative
    N:= 50: # for a(1)..a(N)
    P:= [seq(ithprime(i),i=1..N^2)]:
    f:= proc(n) local M,e,u; M:= Matrix(n,n,P[1..n^2]);
       e:= Vector(n,1);
       e^%T . (M . (M . e));
    end proc:
    map(f, [$1..N]); # Robert Israel, Jan 11 2024
  • PARI
    a(n) = my(m = matrix(n,n, i, j, prime((i-1)*n+j))); my(mm = m^2); sum(k=1, n, vecsum(mm[k,])); \\ Michel Marcus, Jan 28 2017

Formula

a(n) = Sum_{j=1..n} (Sum_{i=1..n} prime(i+n*(j-1)) * Sum_{i=1..n} prime(j+n*(i-1))). - Robert Israel, Jan 11 2024

Extensions

More terms from Michel Marcus, Jan 28 2017