A202320 Decimal expansion of x < 0 satisfying x + 2 = e^x, negated.
1, 8, 4, 1, 4, 0, 5, 6, 6, 0, 4, 3, 6, 9, 6, 0, 6, 3, 7, 8, 4, 6, 6, 0, 4, 6, 5, 8, 0, 1, 2, 4, 8, 6, 1, 0, 6, 0, 5, 0, 3, 7, 1, 3, 1, 4, 3, 7, 7, 6, 3, 9, 6, 6, 9, 5, 6, 4, 8, 5, 0, 0, 8, 9, 5, 4, 8, 1, 8, 4, 0, 8, 1, 2, 1, 8, 3, 1, 7, 0, 0, 0, 5, 1, 0, 3, 4, 5, 6, 7, 1, 6, 9, 1, 3, 0, 4, 0, 1
Offset: 1
Examples
x < 0: -1.841405660436960637846604658012486... x > 0: 1.1461932206205825852370610285213682...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
- Wikipedia, Lambert W function. Applications
- Index entries for transcendental numbers.
Programs
-
Mathematica
(* Program 1: A202320 and A202321 *) u = 1; v = 2; f[x_] := u*x + v; g[x_] := E^x Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, -1.9, -1.8}, WorkingPrecision -> 110] RealDigits[r] (* A202320 *) r = x /. FindRoot[f[x] == g[x], {x, 1.1, 1.2}, WorkingPrecision -> 110] RealDigits[r] (* A202321 *) (* Program 2: implicit surface of u*x+v=e^x *) f[{x_, u_, v_}] := u*x + v - E^x; t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, 1, 2}]}, {v, 2, 4}, {u, 2, 4}]; ListPlot3D[Flatten[t, 1]] (* for A202320 *) RealDigits[-ProductLog[-1/E^2] - 2, 10, 99] // First (* Jean-François Alcover, Feb 26 2013 *)
-
PARI
solve(x=-2, -1, x + 2 - exp(x)) \\ Michel Marcus, Dec 30 2018
-
PARI
lambertw(-exp(-2))-2 \\ Charles R Greathouse IV, Feb 03 2025
Formula
Equals -LambertW(-exp(-2)) - 2. - Vaclav Kotesovec, Jan 09 2014
Equals 2 - A202348. - Jianing Song, Dec 30 2018
Comments