A202348 Decimal expansion of x satisfying x = exp(x-2).
1, 5, 8, 5, 9, 4, 3, 3, 9, 5, 6, 3, 0, 3, 9, 3, 6, 2, 1, 5, 3, 3, 9, 5, 3, 4, 1, 9, 8, 7, 5, 1, 3, 8, 9, 3, 9, 4, 9, 6, 2, 8, 6, 8, 5, 6, 2, 2, 3, 6, 0, 3, 3, 0, 4, 3, 5, 1, 4, 9, 9, 1, 0, 4, 5, 1, 8, 1, 5, 9, 1, 8, 7, 8, 1, 6, 8, 2, 9, 9, 9, 4, 8, 9, 6, 5, 4, 3, 2, 8, 3, 0, 8, 6, 9, 5, 9, 8, 3
Offset: 0
Examples
x = 0.158594339563039362153395341987513893949...
Programs
-
Mathematica
(* Program 1: A202348 *) u = 1; v = -2; f[x_] := x; g[x_] := E^(u*x + v) Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, .15, .16}, WorkingPrecision -> 110] RealDigits[r] (* A202348 *) (* Program 2: implicit surface of x=e^(ux+v) *) f[{x_, u_, v_}] := x - E^(u*x + v); t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, .1, .3}]}, {v, 1, 5}, {u, -5, -.1}]; ListPlot3D[Flatten[t, 1]] (* for A202348 *) RealDigits[-ProductLog[-1/E^2], 10, 99] // First (* Jean-François Alcover, Feb 26 2013 *)
-
PARI
solve(x=0,1,exp(x-2)-x) \\ Charles R Greathouse IV, Feb 26 2013
Formula
Equals -LambertW(-exp(-2)) = 2 - A202320. - Jianing Song, Dec 30 2018
Extensions
Digits from a(93) on corrected by Jean-François Alcover, Feb 26 2013
Comments