cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A202320 Decimal expansion of x < 0 satisfying x + 2 = e^x, negated.

Original entry on oeis.org

1, 8, 4, 1, 4, 0, 5, 6, 6, 0, 4, 3, 6, 9, 6, 0, 6, 3, 7, 8, 4, 6, 6, 0, 4, 6, 5, 8, 0, 1, 2, 4, 8, 6, 1, 0, 6, 0, 5, 0, 3, 7, 1, 3, 1, 4, 3, 7, 7, 6, 3, 9, 6, 6, 9, 5, 6, 4, 8, 5, 0, 0, 8, 9, 5, 4, 8, 1, 8, 4, 0, 8, 1, 2, 1, 8, 3, 1, 7, 0, 0, 0, 5, 1, 0, 3, 4, 5, 6, 7, 1, 6, 9, 1, 3, 0, 4, 0, 1
Offset: 1

Views

Author

Clark Kimberling, Dec 16 2011

Keywords

Comments

For many choices of u and v, there is just one x < 0 and one x > 0 satisfying u*x + v = exp(x). Guide to related sequences, with graphs included in Mathematica programs:
u.... v.... least x.....greatest x
1.... 2.... A202320.... A202321
1.... 3.... A202324.... A202325
2.... 1.... ..(x=0).... A202343
3.... 1.... ..(x=0).... A202344
2.... 2.... A202345.... A202346
1.... e.... A202347.... A104689
e.... 1.... ..(x=0).... A202350
3.... 0.... A202351.... A202352
Suppose that f(x,u,v) is a function of three real variables and that g(u,v) is a function defined implicitly by f(g(u,v),u,v)=0. We call the graph of z = g(u,v) an implicit surface of f.
For an example related to A202320, take f(x,u,v) = u*x + v - exp(x) and g(u,v) = a nonzero solution x of f(x,u,v) = 0. If there is more than one nonzero solution, care must be taken to ensure that the resulting function g(u,v) is single-valued and continuous. A portion of an implicit surface is plotted by Program 2 in the Mathematica section.
The solution for u*x + v = exp(x) is -LambertW(-1/(u*exp(v/u))) - v/u. - Andrea Pinos, Sep 14 2023

Examples

			x < 0:  -1.841405660436960637846604658012486...
x > 0:   1.1461932206205825852370610285213682...
		

Crossrefs

Programs

  • Mathematica
    (* Program 1:  A202320 and A202321 *)
    u = 1; v = 2;
    f[x_] := u*x + v; g[x_] := E^x
    Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -1.9, -1.8}, WorkingPrecision -> 110]
    RealDigits[r]  (* A202320 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.1, 1.2}, WorkingPrecision -> 110]
    RealDigits[r]  (* A202321 *)
    (* Program 2: implicit surface of u*x+v=e^x *)
    f[{x_, u_, v_}] := u*x + v - E^x;
    t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, 1, 2}]}, {v, 2, 4}, {u, 2, 4}];
    ListPlot3D[Flatten[t, 1]] (* for A202320 *)
    RealDigits[-ProductLog[-1/E^2] - 2, 10, 99] // First (* Jean-François Alcover, Feb 26 2013 *)
  • PARI
    solve(x=-2, -1, x + 2 - exp(x)) \\ Michel Marcus, Dec 30 2018
    
  • PARI
    lambertw(-exp(-2))-2 \\ Charles R Greathouse IV, Feb 03 2025

Formula

Equals -LambertW(-exp(-2)) - 2. - Vaclav Kotesovec, Jan 09 2014
Equals 2 - A202348. - Jianing Song, Dec 30 2018

A202352 Decimal expansion of greatest x satisfying 3*x = exp(x).

Original entry on oeis.org

1, 5, 1, 2, 1, 3, 4, 5, 5, 1, 6, 5, 7, 8, 4, 2, 4, 7, 3, 8, 9, 6, 7, 3, 9, 6, 7, 8, 0, 7, 2, 0, 3, 8, 7, 0, 4, 6, 0, 3, 6, 5, 0, 3, 8, 5, 1, 3, 5, 3, 5, 9, 4, 5, 4, 2, 5, 9, 2, 8, 5, 4, 7, 3, 9, 9, 8, 9, 7, 7, 1, 6, 0, 5, 1, 1, 5, 7, 4, 8, 2, 7, 3, 2, 4, 2, 6, 5, 4, 8, 8, 1, 5, 2, 7, 7, 9, 8, 3
Offset: 1

Views

Author

Clark Kimberling, Dec 17 2011

Keywords

Comments

See A202320 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  0.61906128673594511215232699402092223330147...
greatest:  1.51213455165784247389673967807203870460...
		

Crossrefs

Cf. A202320.

Programs

  • Mathematica
    u = 3; v = 0;
    f[x_] := u*x + v; g[x_] := E^x
    Plot[{f[x], g[x]}, {x, -1, 2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 0.6, 0.7}, WorkingPrecision -> 110]
    RealDigits[r] (* A202351 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.5, 1.6}, WorkingPrecision -> 110]
    RealDigits[r] (* A202352 *)
    RealDigits[ -ProductLog[-1, -1/3], 10, 99] // First (* Jean-François Alcover, Feb 27 2013 *)
  • PARI
    solve(x=1, 2, 3*x-exp(x)) \\ Michel Marcus, Nov 09 2017

Formula

Equals -LambertW(-1,-1/3). - Gleb Koloskov, Jun 12 2021

A202323 Decimal expansion of the number x satisfying x+3=exp(-x).

Original entry on oeis.org

7, 9, 2, 0, 5, 9, 9, 6, 8, 4, 3, 0, 6, 7, 7, 0, 0, 1, 4, 1, 8, 3, 9, 5, 8, 7, 7, 8, 8, 5, 4, 2, 2, 0, 6, 1, 8, 6, 5, 9, 2, 2, 1, 9, 3, 1, 7, 0, 0, 9, 7, 8, 8, 2, 9, 0, 8, 0, 5, 0, 5, 5, 9, 7, 9, 3, 6, 2, 7, 3, 7, 2, 1, 0, 8, 5, 5, 1, 5, 4, 5, 7, 3, 2, 8, 1, 5, 0, 0, 8, 7, 3, 2, 3, 8, 3, 5, 4, 0
Offset: 0

Views

Author

Clark Kimberling, Dec 18 2011

Keywords

Comments

See A202322 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			x=-0.7920599684306770014183958778854220...
		

Crossrefs

Cf. A202322.

Programs

  • Mathematica
    u = 3; v = 0;
    f[x_] := u*x + v; g[x_] := E^x
    Plot[{f[x], g[x]}, {x, -1, 2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 0.6, 0.7}, WorkingPrecision -> 110]
    RealDigits[r] (* A202351 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.5, 1.6}, WorkingPrecision -> 110]
    RealDigits[r] (* A202352 *)
    (* other program *)
    RealDigits[ ProductLog[E^3] - 3, 10, 99] // First (* Jean-François Alcover, Feb 14 2013 *)
  • PARI
    lambertw(exp(3)) - 3 \\ G. C. Greubel, Jun 10 2017

Extensions

a(97)-a(98) corrected by Jean-François Alcover, Feb 14 2013
Showing 1-3 of 3 results.