A202392 Decimal expansion of the number x satisfying 3x=exp(-x).
2, 5, 7, 6, 2, 7, 6, 5, 3, 0, 4, 9, 7, 3, 6, 7, 0, 4, 2, 8, 2, 9, 1, 6, 2, 0, 1, 6, 2, 6, 0, 9, 7, 7, 9, 0, 9, 0, 9, 6, 9, 2, 6, 4, 7, 5, 0, 3, 2, 0, 4, 4, 9, 1, 5, 3, 3, 9, 5, 1, 1, 4, 4, 0, 6, 6, 3, 1, 9, 1, 2, 9, 2, 7, 5, 2, 0, 4, 3, 7, 2, 4, 5, 9, 6, 3, 9, 8, 8, 7, 9, 3, 4, 1, 0, 0, 2, 5, 0
Offset: 0
Examples
x=0.257627653049736704282916201626097790909692...
Links
Crossrefs
Cf. A202322.
Programs
-
Mathematica
u = 3; v = 0; f[x_] := u*x + v; g[x_] := E^-x Plot[{f[x], g[x]}, {x, 0, 1}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, .25, .26}, WorkingPrecision -> 110] RealDigits[r] (* A202392 *) (* other program *) RealDigits[ ProductLog[1/3], 10, 99] // First (* Jean-François Alcover, Feb 14 2013 *)
-
PARI
lambertw(1/3) \\ G. C. Greubel, Jun 10 2017
Comments